The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geoc...The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.展开更多
The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-cal...The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.展开更多
Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studi...Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.展开更多
The new SHRIMP rircon U-Pb isotopic study Suggests that the Crystallization age of a highlyfractionated magma in the NE Jianxi ophiolite suite is 968±23 Ma. Re-caiculated Sm-Nd isochronage of 955±44 Ma is wi...The new SHRIMP rircon U-Pb isotopic study Suggests that the Crystallization age of a highlyfractionated magma in the NE Jianxi ophiolite suite is 968±23 Ma. Re-caiculated Sm-Nd isochronage of 955±44 Ma is within analytical ermrs, consistent with the rircon U-Pb age’ Wth the excep-hon of two anomalous Sm-Nd data, the remaining 15 analyses so far obtained for the ophiolitegave swn (T) values falling into a limited range from +4’3 to + 6.7, indicahng that the ophiolitewas derived from a reatively strongly depleted rnanue source. Sm-Nd isotopic systematics in somesamples may have been strongly affected by post-magmatic events, such as alterahon, defonnaonand metamrphism, resuhng in anomalous sNd (T) vafues. Combined with published 40Ar-39Ar agedata, it can be concluded that the collision between the Yangtze and South China Blocks occundduring 0.97- 0.80 Ga.展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Centr...Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.展开更多
Objective The Babu ophiolite in Malipo County of southeastern Yunnan is interpreted as remanant ocean crust and represents a possible branch of Paleo-Tethyan Ocean in South China. It consists mainly of mafic and ultra...Objective The Babu ophiolite in Malipo County of southeastern Yunnan is interpreted as remanant ocean crust and represents a possible branch of Paleo-Tethyan Ocean in South China. It consists mainly of mafic and ultramafic rocks. These rocks are very important to understand the evolution of the Paleo-Tethyan Ocean. However, the Babu ophiolite is still disputed and the mafic and ultramafic rocks have been inferred to be part of the Emeishan large igneous province (LIP) by some researchers. In this paper, we present zircon U-Pb data on the metabasalts in Malipo to reveal the formation time of mafic and ultramafic rocks and their tectonic nature.展开更多
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize ...Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.展开更多
The Geza island-arc is a well-known mineralization concentration area, part of the Sanjiang Domain at the east margin of the Tibetan Plateau. In recent years, several Late Yanshanian granitic intrusions and associated...The Geza island-arc is a well-known mineralization concentration area, part of the Sanjiang Domain at the east margin of the Tibetan Plateau. In recent years, several Late Yanshanian granitic intrusions and associated deposits have been found in this region, the largest one of which in the Shangri-La region is the Laba molybdenum deposit. Previous studies suggested that the timing of the Laba mineralization is 85 ±2 Ma. However, the ages of the granodioritic porphyry remain unknown. In this study, LA-ICP-MS U-Pb dating of zircons from three samples of the molybdenite-bearing granodioritic porphyry has been conducted with resulting dates of 85.00±0.23 Ma (MSWD = 0.58), 85.28 ± 0.28 Ma (MSWD = 1.12), and 84.83 ± 0.26 Ma (MSWD = 0.79), respectively, indicating that these granodioritie porphyries formed in the Late Yanshanian around -85 Ma. Combined with the geological features of the mineralization, the Laba deposit is spatially, temporally, and probably genetically associated with the granodioritic porphyries. In addition, the ages of the Laba deposits are consistent with the other Late Yanshanian intrusions and mineralization, suggesting that the mineralization was probably generated under an intra-plate extensional environment during the Late Cretaceous.展开更多
Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of v...Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.展开更多
The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South T...The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.展开更多
Clastic sedimentary rocks are natural samples of the exposed continental crust over large areas. The Hanjiang (汉江) River drains the northern Yangtze craton, including the South Qinling (秦岭) belt and the northe...Clastic sedimentary rocks are natural samples of the exposed continental crust over large areas. The Hanjiang (汉江) River drains the northern Yangtze craton, including the South Qinling (秦岭) belt and the northern parts of the Yangtze craton. Detrital zircons from this river thus provide an ideal sample for studying the formation and evolution of the northern Yangtze craton. Here we report laser ablation inductively coupled plasma mass spectrometer U-Pb ages of 122 detrital zircons from one sand sample of the Hanjiang River. The 110 concordant zircons reveal four major age groups of 768, 444, 212, and 124 Ma, which well correlate with known magmatic events in the northern Yangtze craton. A minor group is present at 1 536 Ma, which is less known in the study area. Only seven zircons have ages of 〉1 750 Ma. Our results show that the Early Paleozoic, Late Triassic, and Early Cretaceous are important episodes of zircon growth and crustal growth/reworking in addition to the previously documented Neoproterozoic event. Our results suggest very limited exposures of Paleoproterozoic and Archean rocks in the northern parts of the Yangtze craton.展开更多
Objective Intrusive rocks are widely distributed in Altay, Xinjiang, and appear in every structural belt. The rocks are mainly granite (Song Peng et al., 2017), which formed from 523 Ma to 202 Ma and can be divided...Objective Intrusive rocks are widely distributed in Altay, Xinjiang, and appear in every structural belt. The rocks are mainly granite (Song Peng et al., 2017), which formed from 523 Ma to 202 Ma and can be divided into five periods: 479-421 Ma, 410-370 Ma, 368-313 Ma, 300- 252 Ma and 247-202 Ma. However, intrusive rocks earlier than the Ordovician are rarely found. The small- scale low-grade metamorphic granite intruded in the Kanasi Group is the oldest intrusion reported up to now, which is the only one formed in the Early Cambrian (5234-19 Ma, Liu Yuan et al., 2013). Few Cambrian intrusions limit the study of early magmatic-tectonic evolution in Altay. Medium-free-grained granodiorite is exposed widely in the Shayikenbulake deposit of Central Altay, and occurs as batholith. It formed in the Early Cambrian indicated by U-Pb dating, and is an ideal intrusion for studying Cambrian magmatic-tectonic events in Altay.展开更多
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previousl...U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.展开更多
Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches ha...Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches have discussed about the evolution of the Paleo-Asian Ocean(PAO)in the eastern CAOB.However,展开更多
Objective The late Paleozoic Fe-Ti-V oxide deposit of the eastern Tianshan is an important orthomagmatic deposit type in the Central Asia Orogenic Belt (CAOB). A series of Fe-Ti -V oxide deposits and mineralized ma...Objective The late Paleozoic Fe-Ti-V oxide deposit of the eastern Tianshan is an important orthomagmatic deposit type in the Central Asia Orogenic Belt (CAOB). A series of Fe-Ti -V oxide deposits and mineralized mafic-ultramafic intrusions have been recognized recently, such as those in Hongliangzi, Weiya, Yaxi, Shaxinan and Shaxi on the Central Tianshan massif, and Niumaoquan on the southern margin of the Harlik belt (Shi et al., 2018a). Only a few Fe -Ti-V oxide deposits in the eastern Tianshan (e.g., Weiya and Niumaoquan) have been studied, and their chronology need to be further constrained for study of regional Fe-Ti- V oxide metallogenic mechanism and variation of mantlederived magmas during the orogenic process.展开更多
Objective The North China Craton (NCC) is one of the oldest cratons in the world. The accretionary belt at its northern margin has been the focus of scholars both at home and abroad (Zhu Junbing and Ren Jishun, 2...Objective The North China Craton (NCC) is one of the oldest cratons in the world. The accretionary belt at its northern margin has been the focus of scholars both at home and abroad (Zhu Junbing and Ren Jishun, 2017). In recent years, a series of Late Paleozoic-Mesozoic intrusions trending E-W have been discovered within the northern margin of the NCC, forming a magmatic belt. The study on the origin and tectonic setting of this magmatic belt not only has important significance for understanding the Late Paleozoic-Mesozoic tectonic evolution history of the northern margin of the NCC, but also can provide key constraints on the evolution of its surrounding Xing'an- Mongolia orogenic belt and the Paleo-Asian Ocean. At present, no Devonian to early stage of Early Carboniferous intrusion has been reported within the northern margin of the NCC.展开更多
Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Hu...Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan.展开更多
Objective As the third most important copper polymetallic metallogenic belt in Tibet, the Bangongco-Nujiang metallogenic belt (BNMB) has attracted much attention among geoscientists all over the world (Lin Bin et ...Objective As the third most important copper polymetallic metallogenic belt in Tibet, the Bangongco-Nujiang metallogenic belt (BNMB) has attracted much attention among geoscientists all over the world (Lin Bin et al., 2017a). There are two ore clusters in the westem of BNMB, the Duolong giant porphyry-epitherrnal Cu (Au, Ag) ore cluster and the Ga'erqiong-Galalelarge porphyry- skarn Cu (Au) ore cluster (Lin Bin et al., 2017a; 2017b). Now, the latest exploration advances show that the Kuga project is the first economic porphyry-skam copper deposit in the eastern of BNMB, with over 0.4 Mt melt copper (333+334) @ 0.9%. However, the Kuga deposit is poorly studied about its diagenetic age. In this study, we present a zircon U-Pb LA-ICP-MS dating of ore-bearing biotite granite, in order to identify the time of the ore- related magmatism and reveal the relationship with the westem of BNMB.展开更多
The Zhou'an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the ...The Zhou'an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou'an ultramafic complex is ferruginous, with m/f = 4.79-5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high S7Sr/S6Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/ Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5 ± 3.7 Ma.展开更多
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K1019) granted by the Institute of Mineral Resources,Chinese Academy of Geological Sciencesthe ministry of land and resources public welfare industry research project of China (200911007-6)the national crisis's mine resources prospecting project of China (20089949)
文摘The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.
文摘The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.
基金This work was financially suppo.rted by the National Natural Science Foundation of China (No. 40372038 and No. 40325006) Special Grant of 0il & Gas Research (XQ-2004-07).
文摘Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.
文摘The new SHRIMP rircon U-Pb isotopic study Suggests that the Crystallization age of a highlyfractionated magma in the NE Jianxi ophiolite suite is 968±23 Ma. Re-caiculated Sm-Nd isochronage of 955±44 Ma is within analytical ermrs, consistent with the rircon U-Pb age’ Wth the excep-hon of two anomalous Sm-Nd data, the remaining 15 analyses so far obtained for the ophiolitegave swn (T) values falling into a limited range from +4’3 to + 6.7, indicahng that the ophiolitewas derived from a reatively strongly depleted rnanue source. Sm-Nd isotopic systematics in somesamples may have been strongly affected by post-magmatic events, such as alterahon, defonnaonand metamrphism, resuhng in anomalous sNd (T) vafues. Combined with published 40Ar-39Ar agedata, it can be concluded that the collision between the Yangtze and South China Blocks occundduring 0.97- 0.80 Ga.
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.
基金co-supported by the National Natural Science Foundation of China(grant No.41302070)the Fundamental Research Funds for the Central Universities (grants No.310827172004 and 310827173401)Geological Exploration Fund Project of Qinghai Province (grant No.2012209)
文摘Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.
基金supported by the National Natural Science Foundation of China(grant No.41502109)the 973 Program(grant No.2015CB453000)the China Postdoctoral Science Foundation(grant No. 2015M582528)
文摘Objective The Babu ophiolite in Malipo County of southeastern Yunnan is interpreted as remanant ocean crust and represents a possible branch of Paleo-Tethyan Ocean in South China. It consists mainly of mafic and ultramafic rocks. These rocks are very important to understand the evolution of the Paleo-Tethyan Ocean. However, the Babu ophiolite is still disputed and the mafic and ultramafic rocks have been inferred to be part of the Emeishan large igneous province (LIP) by some researchers. In this paper, we present zircon U-Pb data on the metabasalts in Malipo to reveal the formation time of mafic and ultramafic rocks and their tectonic nature.
基金supported by the National Natural Science Foundation of China(No.30670138)
文摘Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.
基金supported by the China Geological Survey Research Foundation for Basic Research(grant no.12120113094600)the Science and Technology Leading Talent from Yunnan(grant no.2013HA001)+1 种基金the National Basic Research Program(grant no.2009CB421000-7)the National Natural Science Foundation(grant no.U1133602)
文摘The Geza island-arc is a well-known mineralization concentration area, part of the Sanjiang Domain at the east margin of the Tibetan Plateau. In recent years, several Late Yanshanian granitic intrusions and associated deposits have been found in this region, the largest one of which in the Shangri-La region is the Laba molybdenum deposit. Previous studies suggested that the timing of the Laba mineralization is 85 ±2 Ma. However, the ages of the granodioritic porphyry remain unknown. In this study, LA-ICP-MS U-Pb dating of zircons from three samples of the molybdenite-bearing granodioritic porphyry has been conducted with resulting dates of 85.00±0.23 Ma (MSWD = 0.58), 85.28 ± 0.28 Ma (MSWD = 1.12), and 84.83 ± 0.26 Ma (MSWD = 0.79), respectively, indicating that these granodioritie porphyries formed in the Late Yanshanian around -85 Ma. Combined with the geological features of the mineralization, the Laba deposit is spatially, temporally, and probably genetically associated with the granodioritic porphyries. In addition, the ages of the Laba deposits are consistent with the other Late Yanshanian intrusions and mineralization, suggesting that the mineralization was probably generated under an intra-plate extensional environment during the Late Cretaceous.
文摘Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.
文摘The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.
基金This paper is jointly supported by the National Natural Science Foundation of China (Nos.40472099,40521001 and 40673019)the Ministry of Education of China (Nos.IRT0441,306021,B07039).
文摘Clastic sedimentary rocks are natural samples of the exposed continental crust over large areas. The Hanjiang (汉江) River drains the northern Yangtze craton, including the South Qinling (秦岭) belt and the northern parts of the Yangtze craton. Detrital zircons from this river thus provide an ideal sample for studying the formation and evolution of the northern Yangtze craton. Here we report laser ablation inductively coupled plasma mass spectrometer U-Pb ages of 122 detrital zircons from one sand sample of the Hanjiang River. The 110 concordant zircons reveal four major age groups of 768, 444, 212, and 124 Ma, which well correlate with known magmatic events in the northern Yangtze craton. A minor group is present at 1 536 Ma, which is less known in the study area. Only seven zircons have ages of 〉1 750 Ma. Our results show that the Early Paleozoic, Late Triassic, and Early Cretaceous are important episodes of zircon growth and crustal growth/reworking in addition to the previously documented Neoproterozoic event. Our results suggest very limited exposures of Paleoproterozoic and Archean rocks in the northern parts of the Yangtze craton.
基金supported by the National Natural Science Foundation of China (grant No.41702100)the Central Government returned two right price capital Program (grant No.Y15-1-LQ10)National Nonprofit Institute Research Grants of CAGSIMR (grant No. K1701)
文摘Objective Intrusive rocks are widely distributed in Altay, Xinjiang, and appear in every structural belt. The rocks are mainly granite (Song Peng et al., 2017), which formed from 523 Ma to 202 Ma and can be divided into five periods: 479-421 Ma, 410-370 Ma, 368-313 Ma, 300- 252 Ma and 247-202 Ma. However, intrusive rocks earlier than the Ordovician are rarely found. The small- scale low-grade metamorphic granite intruded in the Kanasi Group is the oldest intrusion reported up to now, which is the only one formed in the Early Cambrian (5234-19 Ma, Liu Yuan et al., 2013). Few Cambrian intrusions limit the study of early magmatic-tectonic evolution in Altay. Medium-free-grained granodiorite is exposed widely in the Shayikenbulake deposit of Central Altay, and occurs as batholith. It formed in the Early Cambrian indicated by U-Pb dating, and is an ideal intrusion for studying Cambrian magmatic-tectonic events in Altay.
基金supported by Japan Society of Promotion of Science (JSPS KAKENHI Grants-in-Aid for Scientific Research Grant Nos. 23224012, 26106002, and 26106005) from the Japanese Ministry of Education, Science, Sports, Technology, and Culture
文摘U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.
基金supported by the National Natural Science Foundation of China(grants No.41372108 and41602110)the Research Fund for the Doctoral Program of Higher Education of China(grant No.20133718130001)+1 种基金the Qingdao Postdoctoral Applied Research Project(grant No.2015193)the SDUST Research Fund(grant No.2015TDJH101)
文摘Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches have discussed about the evolution of the Paleo-Asian Ocean(PAO)in the eastern CAOB.However,
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0601204)
文摘Objective The late Paleozoic Fe-Ti-V oxide deposit of the eastern Tianshan is an important orthomagmatic deposit type in the Central Asia Orogenic Belt (CAOB). A series of Fe-Ti -V oxide deposits and mineralized mafic-ultramafic intrusions have been recognized recently, such as those in Hongliangzi, Weiya, Yaxi, Shaxinan and Shaxi on the Central Tianshan massif, and Niumaoquan on the southern margin of the Harlik belt (Shi et al., 2018a). Only a few Fe -Ti-V oxide deposits in the eastern Tianshan (e.g., Weiya and Niumaoquan) have been studied, and their chronology need to be further constrained for study of regional Fe-Ti- V oxide metallogenic mechanism and variation of mantlederived magmas during the orogenic process.
基金financially supported by the China Geological Survey(grants No.DD20160048-05,12120113053400 and 12120114055501)
文摘Objective The North China Craton (NCC) is one of the oldest cratons in the world. The accretionary belt at its northern margin has been the focus of scholars both at home and abroad (Zhu Junbing and Ren Jishun, 2017). In recent years, a series of Late Paleozoic-Mesozoic intrusions trending E-W have been discovered within the northern margin of the NCC, forming a magmatic belt. The study on the origin and tectonic setting of this magmatic belt not only has important significance for understanding the Late Paleozoic-Mesozoic tectonic evolution history of the northern margin of the NCC, but also can provide key constraints on the evolution of its surrounding Xing'an- Mongolia orogenic belt and the Paleo-Asian Ocean. At present, no Devonian to early stage of Early Carboniferous intrusion has been reported within the northern margin of the NCC.
基金supported by the Geological Exploration Foundation Project of Xinjiang(grants No.Y15-1-LQ05 and No.T15-2-LQ13)Special Project of National Geological Mineral Investigation and Evaluation(grant No.DD20160345-04)
文摘Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan.
基金sponsored by Public Science and Technology Research Funds Projects, Ministry of Land Resources of the People’s Republic of China (grants No. 201511017, 201511022-05)the Basic Research Fund of the Chinese Academy of Geological Sciences (grant No. YYWF201608)+1 种基金National Natural Science Foundation of China (grant No. 41402178)China Scholarship Council
文摘Objective As the third most important copper polymetallic metallogenic belt in Tibet, the Bangongco-Nujiang metallogenic belt (BNMB) has attracted much attention among geoscientists all over the world (Lin Bin et al., 2017a). There are two ore clusters in the westem of BNMB, the Duolong giant porphyry-epitherrnal Cu (Au, Ag) ore cluster and the Ga'erqiong-Galalelarge porphyry- skarn Cu (Au) ore cluster (Lin Bin et al., 2017a; 2017b). Now, the latest exploration advances show that the Kuga project is the first economic porphyry-skam copper deposit in the eastern of BNMB, with over 0.4 Mt melt copper (333+334) @ 0.9%. However, the Kuga deposit is poorly studied about its diagenetic age. In this study, we present a zircon U-Pb LA-ICP-MS dating of ore-bearing biotite granite, in order to identify the time of the ore- related magmatism and reveal the relationship with the westem of BNMB.
基金granted by the National Natural Science Fund of China (No. 41072058)the Scientific Research Special Subject for Public Welfare Profession (200911007 and201011058)China central college fund(CHD2011TD007)
文摘The Zhou'an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou'an ultramafic complex is ferruginous, with m/f = 4.79-5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high S7Sr/S6Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/ Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5 ± 3.7 Ma.