The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early N...The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752±7 Ma) ages show a small range in εHf(t) from 3.1 to 7.4 and tDM1(Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive eHf(t) values of 1.5 to 5.9, with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.展开更多
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating wa...Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.展开更多
Abundant mafic-ultramafic blocks and dikes occur in the area north of Zunhua City, eastern Hebei Province, and were previously suggested to be part of a late Archean ophiolitic assemblage. We employed SHRIMP zircon da...Abundant mafic-ultramafic blocks and dikes occur in the area north of Zunhua City, eastern Hebei Province, and were previously suggested to be part of a late Archean ophiolitic assemblage. We employed SHRIMP zircon dating and a geochemical study on these mafic and surrounding rocks to test the ophiolite hypothesis. The SHRIMP data suggest that three metagabbro samples were metamorphosed at ~1.8 Ga. Numerous ~2.5 Ga zircons display strong oscillatory zoning, characteristic of zircons from granitoid rocks but not from gabbro, so we suggest that these are xenocrystic grains. The age of these xenocrystic zircons and their metamorpbic rims suggests that these mafic blocks formed in Paleoproterozoic. The surrounding gneiss of intermediate composition also contains 2.5 Ga zircons with oscillatory zoning and 1.8 Ga metamorphic rims. Fractionated REE patterns and Nb, Ta, Zr, Hf negative anomalies to variable extent were observed in the mafic blocks and surrounding rocks, also supporting a significant difference in the chemistry of ophiolitic rocks. Our data suggest that many mafic blocks in northern Zunhua are not part of a late Archean ophiolite complex but part of a tectonically dismembered Paleoproterozoic intrusive gabbro complex. This study shows that late Paleoproterozoic metamorphism occurred in the western part of eastern Hebei Province.展开更多
Komatiites are presented as direct evidence for higher mantle temperatures during the Archean. In the North China Craton, komatiites with spinifex structure have been identified only at one locality, i.e. the Sujiagou...Komatiites are presented as direct evidence for higher mantle temperatures during the Archean. In the North China Craton, komatiites with spinifex structure have been identified only at one locality, i.e. the Sujiagou area, western Shandong. They were considered as formed during the early Neoarchean mainly based on their association with supracrustal rocks considered to be that age. This study carried out SHRIMP U-Pb zircon dating on metamorphosed trondhjemitic and monzogranitic dykes intruding the Sujiagou komatiites, and they have magmatic zircon ages of 2592 ± 12 Ma and 2586 ± 13 Ma respectively. This provides direct evidence that the komatiites formed during the early Neoarchean.展开更多
The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenet...The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenetic ages spanning from Ediacaran to Devonian has been reported in the literature.This age range does not support the idea that the typical character of"coeval mineralization"in an exhalative sedimentary mineralization belt in China and worldwide.Therefore,the precise determination of mineralization ages of representative deposits is necessary to provide guides for exploration and metallogenetic models.The Dajiangping pyrite deposit is a typical example of this kind of deposits and is also the largest deposit with a proven reserve of 210 Mt.This deposit was thought to have formed in Ediacaran or Devonian.In this study,2-3 layers of 10-25 cm thick 2M1-type microcrystalline muscovite slate abruptly embedded in the No.Ⅳmassive orebody of the deposit has been identified to be low-grade metamorphic K-bentonite.A Concordia zircon LA-ICP-MS U-Pb age of 432.5±1.3 Ma(mean standard weighted deviation of concordance and equivalence=1.2;N=11)has been yielded for the low-grade metamorphic K-bentonite.This age is distinctly different from the Rb-Sr isochron age of630.1±7.3 Ma for siliceous rock at the top of the No.Ⅲbanded orebody and the Re-Os isochron age of 389±62 Ma for pyrites from a laminated orebody.Instead,it is close to the intercept age(429 Ma)of the youngest detrital zircons from sandstone interlayers of the No.Ⅲbanded orebody.The Concordia age is also coincident with those of the Late Caledonian(400-460 Ma)magmatism-metamorphism events which are widely distributed in Cathaysia Block.Particularly,it agrees well with that of the Early Silurian extensional volcanism(434-444 Ma)which have been revealed in the Dabaoshan,Siqian-Hekou,and Nanjing volcanic basins in northern Guangdong Province and southern Jiangxi Province.Hence,the dating result in this study confirms that the sedimentary time of the ore-host Daganshan Formation is Early Silurian,and implies that the mineralization age of the Dajiangping pyrite deposit should also be Early Silurian.In combination with the Early Silurian age of Shezui pyrite deposit and the Dabaoshan volcanic basin along the WSS pyrite belt,it could be inferred that the WSS pyrite belt provides a record of the northern expanding of Qinzhou-Fangcheng trough in Early Silurian and that the exhalative pyrite mineralization was triggered by the postcollisional extension of the margin of Cathaysia Block after the intracontinental collision between Cathaysia Block and Yangtze Block during Late Caledonian stage.展开更多
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th...The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.展开更多
The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xie...The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xiema and Xiangzikou plutons in Hunan Province, and 205.3±1.6 Ma for biotite granite from the Napeng pluton, western Guandong Province, respectively, showing a similar late Indosinian age of crystallization. In combination with other geochronological data from Indosinian granites within the South China Block (SCB), it is proposed that those late Indosinian granites with an age of -210 Ma and the early Indosinian granites (230-245 Ma) have the similar petrogenesis in identical tectonic setting. The Indosinian granites within the SCB might be the products of anatexis of the thickening crust in a compressive regime. These data provide a further understanding for the temporal and spatial distribution of the Indosinian granites and the dynamic evolution of the SCB.展开更多
The purpose of this paper is to determine the provenance and tectonic setting of the Phu Khat Formation and get a better understanding of the tectonic evolution of the Nakhon Thai region using the petrography and whol...The purpose of this paper is to determine the provenance and tectonic setting of the Phu Khat Formation and get a better understanding of the tectonic evolution of the Nakhon Thai region using the petrography and whole-rock geochemistry integrated with the U-Pb detrital zircon dating. The sandstone of the Late Cretaceous to Early Tertiary Phu Khat Formation is chiefly characterized by unsorted texture and highly unstable volcanic lithic fragments. The formation overlies unconformably on a high textural and mineral maturity of clastic sandstone of the Late Cretaceous Khao Ya Puk Formation. Geochemically, the tectonic setting discrimination(K2O/Na2O-SiO2, Al2O3/SiO2-Fe2O3+Mg O, and Th-Sc-Zr/10) and the petrography indicate that the Phu Khat Formation was accumulated in a passive margin tectonic setting which is the same as the Khao Ya Puk Formation but with a different depositional environment. The plots of geochemical provenance discrimination(La/Th-Hf, Th/Sc-Zr/Sc, Eu anomaly Eu/Eu* 0.42 to 0.74) and the petrography reveal that the provenance of the Khao Ya Puk Formation is mainly recycled sedimentary rocks while the Phu Khat Formation consists primarily of recycled sedimentary rocks associated with minor felsic volcanic rocks from the old continental island arc of the uplifted either western or eastern continental terranes or both. However, the U-Pb detrital zircon dating indicates a unique provenance of the Phu Khat Formation from the terrane west of the Nakhon Thai region where the volcanic continental arc is active predominantly in the Middle to Late Triassic. The results indicate that while the Phu Khat Formation was accumulated in Nakhon Thai region, the western terrane was uplifted by reactivation of the preexisting structure probably since the Maastrichtian time to be the source area of sediments. Meanwhile, the eastern terrane(mainly Loei-Phetchabun fold belt) had not been uplifted probably until, the accumulation of the Phu Khat Formation terminated. Subsequently, the whole region began to uplift forming a high mountainous area since the Ypresian time when the Greater India collided with the Eurasia.展开更多
For magmatic rocks,it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample,which gives rise to large dating error...For magmatic rocks,it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample,which gives rise to large dating errors or even unrealistic dating results.As the trace element concentrations of zircon can reflect its equilibrated magma characteristics,they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber.This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages,which can be used to determine a more accurate intrusion crystallization age.The late Mesozoic Huayuangong granitic pluton complex,which is located in the Lower Yangtze region,eastern China,was selected for a case study.The Huayuangong pluton comprises the central intrusion and the marginal intrusion.Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6±2.0 Ma and 125.9±1.6 Ma.These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma,from which the dated zircons crystallized.However,for the central intrusion,the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span.For each sample from the central intrusion,the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend,but rather can be divided into two groups.We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred.By screening zircon analytical spots using these two indicators,the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8±4.3 Ma and 122.9±2.2 Ma,which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.展开更多
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern T...As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure (HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative fclsic granulitc samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism (Stage I) with P-T conditions of 9.8-10.4 kbar at 895-920℃ was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism (Stage II) shows P-T conditions of 13.2-13.5 kbar at 845-860℃, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anti- clockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ICP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are -430 Ma, with two age groups of-390 Ma and 340-350 Ma from the metamorphic rims of zircon, indicating the Stage I and II metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage I granulite facies metamorphism of -390 Ma, which may he related to the Devonian arc magmatic intrusion; Stage II HP granulite facies metamorphism (340-350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.展开更多
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone-type uranium mineral resources. Chang 7 shale is not only the major source rock of...The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone-type uranium mineral resources. Chang 7 shale is not only the major source rock of the Mesozoic petroliferous system of the Basin, but is also crucial in determining the space-time distribution relationship of the shale section for the effective exploration and development of the Basin's oil and gas resources. To obtain a highly precise age of the shale development section, we collected tuff samples from the top and bottom profile of the Chang 7 Member, Yishi Village, Yaoqu Town, Tongchuan District, on the southern margin of the Ordos Basin and performed high-precision chemical abrasion(CA)–isotope dilution(ID)–thermal ionization mass spectrometry(TIMS) zircon U-Pb dating on the basis of extensive laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) zircon U-Pb dating data. Our results show the precise ages of the top and bottom zircon in the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. We first obtained Chang 7 age data with Grade 0.1-Ma precision and then determined the age of the shale development in the Chang 7 Member to be the early-Middle Triassic Ladinian. This result is supported by paleontological evidence. The deposition duration of the Chang 7 shale is 0.5 Ma with an average deposition rate of the shale section being 5.3 cm/ka. Our research results provide time scale and basic data for further investigation of the basin–mountain coupling relation of the shale section, the sedimentary environment and volcanic ash and organic-matter-rich shale development relation, and the organism break-out and organic-matter enrichment mechanism.展开更多
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the cr...Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.展开更多
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula...The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.展开更多
LA-ICPMS Zircon U-Pb dating is applied to volcanic rocks overlying and underlying the Salamander-bearing bed in the Daohugou beds of Ningcheng in Inner Mongola and Reshuichang of Lingyuan and Mazhangzi of Jianping in ...LA-ICPMS Zircon U-Pb dating is applied to volcanic rocks overlying and underlying the Salamander-bearing bed in the Daohugou beds of Ningcheng in Inner Mongola and Reshuichang of Lingyuan and Mazhangzi of Jianping in western Liaoning. The results indicate that the youngest age of the rocks in Daohugou of Ningcheng is 158 Ma, and the oldest one is 164 Ma. Synthesized researches indicate that the salamander-bearing beds in Daohugou of Ningcheng, Reshuichang of Lingyuan and Mazhangzi of Jianping were developed in the same period. The Daohugou beds were formed in the geological age of 164-158 Ma of the middle-late Jurassic. Whilst, the Daohugou beds and its corrdative strata should correspond to the Tiaojishan Formation (or Lanqi Formation) of the middle Jurassic in northern Hebei Province and western Liaoning Province, based on the disconformity between the Daohugou beds and its overlaying beds of the Tuchengzi Formation of Late Jurassic and the Jehol Beds of early Cretaceous, and the disconformity between the Daohugou Beds and its underlying Jiulongshan Formation, which is composed of conglomerate, sandstone, shale with coal and thin coal beds.展开更多
The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only cons...The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.展开更多
The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.H...The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.展开更多
基金financially supported by the National Natural Science Foundation of China(grants No.41173065 and 40703012)the China Geological Survey(grants No.1212011121075, 12120114020901,12120113094000 and 1212011120332)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the People's Republic of China(grant No.J1403)
文摘The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752±7 Ma) ages show a small range in εHf(t) from 3.1 to 7.4 and tDM1(Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive eHf(t) values of 1.5 to 5.9, with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.
文摘Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.
基金funded by the National Natural Science Foundation of China (Grant No. 41472168, 41472169)China State Mineral Resources Investigation Program (Grant No. DD20160121-03 and DD20160345)
文摘Abundant mafic-ultramafic blocks and dikes occur in the area north of Zunhua City, eastern Hebei Province, and were previously suggested to be part of a late Archean ophiolitic assemblage. We employed SHRIMP zircon dating and a geochemical study on these mafic and surrounding rocks to test the ophiolite hypothesis. The SHRIMP data suggest that three metagabbro samples were metamorphosed at ~1.8 Ga. Numerous ~2.5 Ga zircons display strong oscillatory zoning, characteristic of zircons from granitoid rocks but not from gabbro, so we suggest that these are xenocrystic grains. The age of these xenocrystic zircons and their metamorpbic rims suggests that these mafic blocks formed in Paleoproterozoic. The surrounding gneiss of intermediate composition also contains 2.5 Ga zircons with oscillatory zoning and 1.8 Ga metamorphic rims. Fractionated REE patterns and Nb, Ta, Zr, Hf negative anomalies to variable extent were observed in the mafic blocks and surrounding rocks, also supporting a significant difference in the chemistry of ophiolitic rocks. Our data suggest that many mafic blocks in northern Zunhua are not part of a late Archean ophiolite complex but part of a tectonically dismembered Paleoproterozoic intrusive gabbro complex. This study shows that late Paleoproterozoic metamorphism occurred in the western part of eastern Hebei Province.
基金financially supported by the Key Program of the Ministry of Land and Resources of China(DD20190370,DD20190009,DD20190358,DD20190003)。
文摘Komatiites are presented as direct evidence for higher mantle temperatures during the Archean. In the North China Craton, komatiites with spinifex structure have been identified only at one locality, i.e. the Sujiagou area, western Shandong. They were considered as formed during the early Neoarchean mainly based on their association with supracrustal rocks considered to be that age. This study carried out SHRIMP U-Pb zircon dating on metamorphosed trondhjemitic and monzogranitic dykes intruding the Sujiagou komatiites, and they have magmatic zircon ages of 2592 ± 12 Ma and 2586 ± 13 Ma respectively. This provides direct evidence that the komatiites formed during the early Neoarchean.
文摘The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
基金supported by the National Natural Science Foundation of China(Grant Nos.41873058 and 41462001)the Natural Science and Technology Foundation of Guizhou Province,China(Grant No.JZ[2015]2009)。
文摘The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenetic ages spanning from Ediacaran to Devonian has been reported in the literature.This age range does not support the idea that the typical character of"coeval mineralization"in an exhalative sedimentary mineralization belt in China and worldwide.Therefore,the precise determination of mineralization ages of representative deposits is necessary to provide guides for exploration and metallogenetic models.The Dajiangping pyrite deposit is a typical example of this kind of deposits and is also the largest deposit with a proven reserve of 210 Mt.This deposit was thought to have formed in Ediacaran or Devonian.In this study,2-3 layers of 10-25 cm thick 2M1-type microcrystalline muscovite slate abruptly embedded in the No.Ⅳmassive orebody of the deposit has been identified to be low-grade metamorphic K-bentonite.A Concordia zircon LA-ICP-MS U-Pb age of 432.5±1.3 Ma(mean standard weighted deviation of concordance and equivalence=1.2;N=11)has been yielded for the low-grade metamorphic K-bentonite.This age is distinctly different from the Rb-Sr isochron age of630.1±7.3 Ma for siliceous rock at the top of the No.Ⅲbanded orebody and the Re-Os isochron age of 389±62 Ma for pyrites from a laminated orebody.Instead,it is close to the intercept age(429 Ma)of the youngest detrital zircons from sandstone interlayers of the No.Ⅲbanded orebody.The Concordia age is also coincident with those of the Late Caledonian(400-460 Ma)magmatism-metamorphism events which are widely distributed in Cathaysia Block.Particularly,it agrees well with that of the Early Silurian extensional volcanism(434-444 Ma)which have been revealed in the Dabaoshan,Siqian-Hekou,and Nanjing volcanic basins in northern Guangdong Province and southern Jiangxi Province.Hence,the dating result in this study confirms that the sedimentary time of the ore-host Daganshan Formation is Early Silurian,and implies that the mineralization age of the Dajiangping pyrite deposit should also be Early Silurian.In combination with the Early Silurian age of Shezui pyrite deposit and the Dabaoshan volcanic basin along the WSS pyrite belt,it could be inferred that the WSS pyrite belt provides a record of the northern expanding of Qinzhou-Fangcheng trough in Early Silurian and that the exhalative pyrite mineralization was triggered by the postcollisional extension of the margin of Cathaysia Block after the intracontinental collision between Cathaysia Block and Yangtze Block during Late Caledonian stage.
基金supported by the Iran National Science Foundation(INSF)(Grant No.98012578)projects from the National Natural Science Foundation of China(Grant Nos.41473033,41673031)。
文摘The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.
基金This study was financially supported by the National Natural Science Foundation of China(grants 40421303 and 40234046).
文摘The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xiema and Xiangzikou plutons in Hunan Province, and 205.3±1.6 Ma for biotite granite from the Napeng pluton, western Guandong Province, respectively, showing a similar late Indosinian age of crystallization. In combination with other geochronological data from Indosinian granites within the South China Block (SCB), it is proposed that those late Indosinian granites with an age of -210 Ma and the early Indosinian granites (230-245 Ma) have the similar petrogenesis in identical tectonic setting. The Indosinian granites within the SCB might be the products of anatexis of the thickening crust in a compressive regime. These data provide a further understanding for the temporal and spatial distribution of the Indosinian granites and the dynamic evolution of the SCB.
文摘The purpose of this paper is to determine the provenance and tectonic setting of the Phu Khat Formation and get a better understanding of the tectonic evolution of the Nakhon Thai region using the petrography and whole-rock geochemistry integrated with the U-Pb detrital zircon dating. The sandstone of the Late Cretaceous to Early Tertiary Phu Khat Formation is chiefly characterized by unsorted texture and highly unstable volcanic lithic fragments. The formation overlies unconformably on a high textural and mineral maturity of clastic sandstone of the Late Cretaceous Khao Ya Puk Formation. Geochemically, the tectonic setting discrimination(K2O/Na2O-SiO2, Al2O3/SiO2-Fe2O3+Mg O, and Th-Sc-Zr/10) and the petrography indicate that the Phu Khat Formation was accumulated in a passive margin tectonic setting which is the same as the Khao Ya Puk Formation but with a different depositional environment. The plots of geochemical provenance discrimination(La/Th-Hf, Th/Sc-Zr/Sc, Eu anomaly Eu/Eu* 0.42 to 0.74) and the petrography reveal that the provenance of the Khao Ya Puk Formation is mainly recycled sedimentary rocks while the Phu Khat Formation consists primarily of recycled sedimentary rocks associated with minor felsic volcanic rocks from the old continental island arc of the uplifted either western or eastern continental terranes or both. However, the U-Pb detrital zircon dating indicates a unique provenance of the Phu Khat Formation from the terrane west of the Nakhon Thai region where the volcanic continental arc is active predominantly in the Middle to Late Triassic. The results indicate that while the Phu Khat Formation was accumulated in Nakhon Thai region, the western terrane was uplifted by reactivation of the preexisting structure probably since the Maastrichtian time to be the source area of sediments. Meanwhile, the eastern terrane(mainly Loei-Phetchabun fold belt) had not been uplifted probably until, the accumulation of the Phu Khat Formation terminated. Subsequently, the whole region began to uplift forming a high mountainous area since the Ypresian time when the Greater India collided with the Eurasia.
基金financially supported by the National Natural Science Foundation of China(Grant No.41672052)the National Key R&D Program of China(Grant No.2016YFC0600203)。
文摘For magmatic rocks,it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample,which gives rise to large dating errors or even unrealistic dating results.As the trace element concentrations of zircon can reflect its equilibrated magma characteristics,they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber.This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages,which can be used to determine a more accurate intrusion crystallization age.The late Mesozoic Huayuangong granitic pluton complex,which is located in the Lower Yangtze region,eastern China,was selected for a case study.The Huayuangong pluton comprises the central intrusion and the marginal intrusion.Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6±2.0 Ma and 125.9±1.6 Ma.These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma,from which the dated zircons crystallized.However,for the central intrusion,the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span.For each sample from the central intrusion,the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend,but rather can be divided into two groups.We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred.By screening zircon analytical spots using these two indicators,the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8±4.3 Ma and 122.9±2.2 Ma,which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.
基金financially supported by the National Natural Science Foundation of China(Grants 41330210,41520104004)
文摘As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure (HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative fclsic granulitc samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism (Stage I) with P-T conditions of 9.8-10.4 kbar at 895-920℃ was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism (Stage II) shows P-T conditions of 13.2-13.5 kbar at 845-860℃, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anti- clockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ICP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are -430 Ma, with two age groups of-390 Ma and 340-350 Ma from the metamorphic rims of zircon, indicating the Stage I and II metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage I granulite facies metamorphism of -390 Ma, which may he related to the Devonian arc magmatic intrusion; Stage II HP granulite facies metamorphism (340-350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
基金supported by the National Basic Research Program of China (973 Program) granted No. 2014CB239001
文摘The Ordos Basin, as the second largest petroliferous basin of China, contains abundant oil and gas resources, oil shale, and sandstone-type uranium mineral resources. Chang 7 shale is not only the major source rock of the Mesozoic petroliferous system of the Basin, but is also crucial in determining the space-time distribution relationship of the shale section for the effective exploration and development of the Basin's oil and gas resources. To obtain a highly precise age of the shale development section, we collected tuff samples from the top and bottom profile of the Chang 7 Member, Yishi Village, Yaoqu Town, Tongchuan District, on the southern margin of the Ordos Basin and performed high-precision chemical abrasion(CA)–isotope dilution(ID)–thermal ionization mass spectrometry(TIMS) zircon U-Pb dating on the basis of extensive laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) zircon U-Pb dating data. Our results show the precise ages of the top and bottom zircon in the Chang 7 shale to be 241.06±0.12 Ma and 241.558±0.093 Ma, respectively. We first obtained Chang 7 age data with Grade 0.1-Ma precision and then determined the age of the shale development in the Chang 7 Member to be the early-Middle Triassic Ladinian. This result is supported by paleontological evidence. The deposition duration of the Chang 7 shale is 0.5 Ma with an average deposition rate of the shale section being 5.3 cm/ka. Our research results provide time scale and basic data for further investigation of the basin–mountain coupling relation of the shale section, the sedimentary environment and volcanic ash and organic-matter-rich shale development relation, and the organism break-out and organic-matter enrichment mechanism.
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
基金supported by the State Key Program of the National Natural Science of China(grant no2008ZX05023-003)the project of the State Key Laboratory of Marine Geology(grant noMG200904)the National Natural Science Foundation of China (grant no40872138)
文摘Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.
基金supported by the "973"Project for Basic Research of China (No. 2011CB403103)Ministry of Land and Resources’ Special Funds for Scientific Research on Public Causes (No. 200911007-02)China Geological Survey’ Special Funds for Scientific Research on Qinghai-Tibet Plateau (No. 1212010012005)
文摘The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.
文摘LA-ICPMS Zircon U-Pb dating is applied to volcanic rocks overlying and underlying the Salamander-bearing bed in the Daohugou beds of Ningcheng in Inner Mongola and Reshuichang of Lingyuan and Mazhangzi of Jianping in western Liaoning. The results indicate that the youngest age of the rocks in Daohugou of Ningcheng is 158 Ma, and the oldest one is 164 Ma. Synthesized researches indicate that the salamander-bearing beds in Daohugou of Ningcheng, Reshuichang of Lingyuan and Mazhangzi of Jianping were developed in the same period. The Daohugou beds were formed in the geological age of 164-158 Ma of the middle-late Jurassic. Whilst, the Daohugou beds and its corrdative strata should correspond to the Tiaojishan Formation (or Lanqi Formation) of the middle Jurassic in northern Hebei Province and western Liaoning Province, based on the disconformity between the Daohugou beds and its overlaying beds of the Tuchengzi Formation of Late Jurassic and the Jehol Beds of early Cretaceous, and the disconformity between the Daohugou Beds and its underlying Jiulongshan Formation, which is composed of conglomerate, sandstone, shale with coal and thin coal beds.
基金This research was supported by the National Natural Science Foundation of China (No. 40372036)the Key Project of the Ministry of Education, China (No. 306007).
文摘The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.
基金funded by the Basic Scientific Research Fund of the Institute of Geology, Chinese Academy of Geological Sciences (Grant No. J2103)National Key Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2017YFC0601301)+1 种基金the National Natural Science Foundation of China (Grant No. 41972224)the China Geological Survey (Grant No. DD2019004)。
文摘The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.