Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire...Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.展开更多
ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered d...ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed.展开更多
The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. Acco...The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.展开更多
Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electroche...Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries.展开更多
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t...Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.展开更多
CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for...CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.展开更多
A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), l...A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), laser Raman spectrum (LRS), and temperature programmed reduction (TPR) techniques. The XRD and LRS results confirmed the high dispersion of active components or formation of solid solution between manganese and cerium oxides in the bulk and on the surface of mixed oxide catalysts. The reducibility was remarkably promoted by the stronger synergistic interaction between the two oxides from H2-TPR measurements. As expected, all the experimental mixed oxide catalysts showed excellent activity for methane combustion at low temperature. Especially, for the catalyst with Mn-Ce ratio 3:7, methane conversion reached 92% at a temperature as low as 470 ℃.展开更多
CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (...CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.展开更多
Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared wer...A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO 2) as the model reactant, showed that TiO 2-SiO 2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO 2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.展开更多
A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxi...A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxides.The catalyst with a Co/Cr molar ratio of 1:2(1 Co2 Cr)and a spinel structure has the best activity(with a reaction rate of 1.38μmol g^–1 s^–1 at 250℃),which is attributed to the synergistic roles of its high surface acidity and good low-temperature reducibility,as evidenced by the temperature-programmed desorption of ammonia,reduction of hydrogen,and surface reaction of propane.Kinetic study shows that the reaction orders of propane and oxygen on the 1 Co2 Cr catalyst(0.58±0.03 and 0.34±0.05,respectively)are lower than those on the 2 Co1 Cr catalyst(0.77±0.02 and 0.98±0.16,respectively)and 1 Co5 Cr(0.66±0.05 and 1.30±0.11,respectively),indicating that the coverages of propane and oxygen on 1 Co2 Cr are higher than those on the other catalysts due to its higher surface acidity and higher reducibility.In addition,in-situ diffuse reflectance infrared spectroscopic investigation reveals that the main surface species on 1 Co2 Cr during the reaction are polydentate carbonate species,which accumulate on the surface at low temperatures(<250℃)but decompose at relatively high temperatures.展开更多
The effect of doping CuO on the structure and properties of zirconia ceria mixed oxide was studied. The results show that addition of CuO decreases the reduction temperature of ceria, and stabilizes the cubic structu...The effect of doping CuO on the structure and properties of zirconia ceria mixed oxide was studied. The results show that addition of CuO decreases the reduction temperature of ceria, and stabilizes the cubic structure of mixed oxides, and enhances catalytic activity of CuO ZrO CeO 2 mixed oxides for CO oxidation. Increasing ceria content in the mixed oxides can enhance the catalytic activity, but some impurities such as sulfate make catalytic activity falling. There is little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.展开更多
To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects...To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.展开更多
Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal tempera...Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated. The final products were characterized by XRD, TEM, FT-IR, and BET. The results indicate that all the cerium-zirconium mixed oxides present a meso-structure. At molar ratio of n(CTAB)/n((Ce)+(Zr))= 0.15, pH value of 9, and hydrothermal temperature of 120 ℃, the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.展开更多
In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduc...In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduced to obtain Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalysts.Compared with Pd/γ-Al2O3 catalyst,the hydrogenation efficiency of Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 increased by 15.7%and 24.0%,respectively.Moreover,the stability of Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalyst was also higher than that of Pd/γ-Al2O3.After four runs,the hydrogenation efficiency of Pd/γ-Al2O3 decreased from 12.1 to 10.0 g/L,while that of Pd-Mg(Al)Zr-MMO/γ-Al2O3 decreased from 15.0 to 14.3 g/L.The active aquinones selectivities of all catalysts were almost 99%.The structures of the catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N2 adsorption–desorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),CO chemisorption analysis,transmission electron microscopy(TEM),temperature-programmed reduction with hydrogen(H2-TPR),and X-ray photoelectron spectroscopy(XPS).The results indicate that the improved catalytic performance is attributed to the stronger interaction between Pd and Mg(Al)Zr-MMO/γ-Al2O3,smaller Pd particle size and higher Pd dispersion.This work develops an effective method to synthesize highly dispersed Pd nanoparticles based on the layered double hydroxides(LDHs)precursor.展开更多
Due to the oxygen storage and release properties,cerium zirconium mixed oxides are recognized as the key material in automotive three-way catalysts.To reveal the effects of co-precipitation temperature on structure,ph...Due to the oxygen storage and release properties,cerium zirconium mixed oxides are recognized as the key material in automotive three-way catalysts.To reveal the effects of co-precipitation temperature on structure,physical and chemical properties of multi-doped cerium zirconium mixed oxides,a series of La and Y doped cerium zirconium mixed oxides(CZLYs)were synthesized via a co-precipitation method,and the physical and chemical properties of CZLYs were systemically characterized by XRD,N_(2) adsorption−desorption,TEM,XPS,oxygen storage capacity(OSC)and hydrogen temperature programmed reduction(H_(2)-TPR).The results show that co-precipitation temperature is an important parameter to influence the crystal size,oxygen storage capacity and thermal stability of CZLYs.When the co-precipitation temperature was 60℃,the best redox properties and thermal stability of CZLYs were obtained.After thermal treatment at 1100℃for 10 h,the specific surface area and oxygen storage capacity of the corresponding aged sample were 15.42 m^(2)/g and 497.7μmol/g,respectively.In addition,a mechanism was proposed to reveal the effects of co-precipitation temperature on the structure and properties of CZLYs.展开更多
Marine biofouling is an expensive problem that needs evolved chemical or physical antifouling strategies.However,most of the current antifouling materials that would damage the environment through metal leaching and b...Marine biofouling is an expensive problem that needs evolved chemical or physical antifouling strategies.However,most of the current antifouling materials that would damage the environment through metal leaching and bacteria resistance are being halted.Nanozyme is one kind of environmental antifouling materials through generating reactive oxygen species(ROS).We prepared various contents of CeO2 that could uniform disperse compounding with Co3 O4 and CoAl2 O4 to form a stable Co-Al-Ce mixed metal oxide(MMO) by a layered double hydroxide derived method.We find that coupling with CeO2 can improve the peroxidase(POx) activity.When the molar ratio of Ce is 2.5% and the calcination temperature is 200℃,the POx activity of Co-Al-Ce MMO is the best caused by the good dispersion of catalytically active components and the high specific area(150.10±4.95 m2/g).This novel Co-Al-Ce MMO also exhibits an antibacterial mode of action Gram-negative bacteria in near-neutral pH solution through generating ROS(mainly ·O2-)in the presence of H2 O2.Ce containing MMO can be utilized as potential green marine antifouling material.展开更多
Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
A series of LnSrNiO_4(A_2BO_4, Ln=La, Pr, Nd, Sm, Gd) mixed oxides with K_2NiF_4 structure, in which Asite(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physicochemic...A series of LnSrNiO_4(A_2BO_4, Ln=La, Pr, Nd, Sm, Gd) mixed oxides with K_2NiF_4 structure, in which Asite(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physicochemical properties including crystal structure, defect structure, IR spectrum, valence state of Bsite ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 ℃ the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at Asite on catalytic behavior for NO decomposition was elucidated.展开更多
基金Financial support from the National Key Research and Development Program of China(2022YFB3805602)the National Natural Science Foundation of China(22138001,22288102)the Fundamental Research Funds for the Central Universities。
文摘Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.
基金Project(21306041)supported by the National Natural Science Young Foundation of ChinaProject(21271071)supported by the National Natural Science Foundation of ChinaProject(15A076)supported by the Scientific Research Foundation of Hunan Provincial Education Department of China
文摘ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed.
文摘The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.
基金financially supported by the National Natural Science Foundation of China(52202046,51602246,and 51801144)the Natural Science Foundation of Shanxi Provincial(2021JQ-034)。
文摘Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries.
基金supported by the Shanghai Agricultural Science and Technology Program (2022-02-08-00-12-F01176)he National Natural Science Foundation of China (52006135)
文摘Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.
基金PRIN 2006, "Caratterizzazione spettroscopica e morfologica di Me-POSS eterogeneizzati", MEL Chemicals
文摘CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.
基金supported by the New Century Excellent Talent Project of China (NCET-05-0783)
文摘A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), laser Raman spectrum (LRS), and temperature programmed reduction (TPR) techniques. The XRD and LRS results confirmed the high dispersion of active components or formation of solid solution between manganese and cerium oxides in the bulk and on the surface of mixed oxide catalysts. The reducibility was remarkably promoted by the stronger synergistic interaction between the two oxides from H2-TPR measurements. As expected, all the experimental mixed oxide catalysts showed excellent activity for methane combustion at low temperature. Especially, for the catalyst with Mn-Ce ratio 3:7, methane conversion reached 92% at a temperature as low as 470 ℃.
基金Project supported by the National "973"Project (2004CB719503)Project supported by the National Natural ScienceFoundation of China (50502023)
文摘CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.
基金Supported by the National Natural Science Foundation of China(No.2 0 2 770 15 )
文摘A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO 2) as the model reactant, showed that TiO 2-SiO 2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO 2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.
基金financially supported by the National Natural Science Foundation of China(21773212,21872124)~~
文摘A series of Co–Cr–O mixed oxides with different Co/Cr molar ratios are synthesized and tested for the total oxidation of propane.The reaction behaviors are closely related to the structural features of the mixed oxides.The catalyst with a Co/Cr molar ratio of 1:2(1 Co2 Cr)and a spinel structure has the best activity(with a reaction rate of 1.38μmol g^–1 s^–1 at 250℃),which is attributed to the synergistic roles of its high surface acidity and good low-temperature reducibility,as evidenced by the temperature-programmed desorption of ammonia,reduction of hydrogen,and surface reaction of propane.Kinetic study shows that the reaction orders of propane and oxygen on the 1 Co2 Cr catalyst(0.58±0.03 and 0.34±0.05,respectively)are lower than those on the 2 Co1 Cr catalyst(0.77±0.02 and 0.98±0.16,respectively)and 1 Co5 Cr(0.66±0.05 and 1.30±0.11,respectively),indicating that the coverages of propane and oxygen on 1 Co2 Cr are higher than those on the other catalysts due to its higher surface acidity and higher reducibility.In addition,in-situ diffuse reflectance infrared spectroscopic investigation reveals that the main surface species on 1 Co2 Cr during the reaction are polydentate carbonate species,which accumulate on the surface at low temperatures(<250℃)but decompose at relatively high temperatures.
文摘The effect of doping CuO on the structure and properties of zirconia ceria mixed oxide was studied. The results show that addition of CuO decreases the reduction temperature of ceria, and stabilizes the cubic structure of mixed oxides, and enhances catalytic activity of CuO ZrO CeO 2 mixed oxides for CO oxidation. Increasing ceria content in the mixed oxides can enhance the catalytic activity, but some impurities such as sulfate make catalytic activity falling. There is little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.
基金supported by the National Natural Science Foundation of China(Nos.21676225 and 21776236)Natural Science Foundation of Hunan Province(2018JJ2384)+2 种基金Fund of Hunan Provincial Education Department(19A478)Collaborative Innovation Centre of New Chemical Technologies for Environmental Benignity and Efficient Resource UtilizationEngineering Research Centre of Chemical Process Simulation and Optimization of Ministry of Education。
文摘To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.
基金Project(CHCL0501) supported by Hubei Provincial Open Fund of Key Laboratory of Catalytic Material Science and Technology
文摘Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated. The final products were characterized by XRD, TEM, FT-IR, and BET. The results indicate that all the cerium-zirconium mixed oxides present a meso-structure. At molar ratio of n(CTAB)/n((Ce)+(Zr))= 0.15, pH value of 9, and hydrothermal temperature of 120 ℃, the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.
基金supported by the National Natural Science Foundation of China (Nos. 21276179, 21576205)the Program for Changjiang Scholars, Innovative Research Team in University (IRT_15R46)
文摘In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduced to obtain Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalysts.Compared with Pd/γ-Al2O3 catalyst,the hydrogenation efficiency of Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 increased by 15.7%and 24.0%,respectively.Moreover,the stability of Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalyst was also higher than that of Pd/γ-Al2O3.After four runs,the hydrogenation efficiency of Pd/γ-Al2O3 decreased from 12.1 to 10.0 g/L,while that of Pd-Mg(Al)Zr-MMO/γ-Al2O3 decreased from 15.0 to 14.3 g/L.The active aquinones selectivities of all catalysts were almost 99%.The structures of the catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N2 adsorption–desorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),CO chemisorption analysis,transmission electron microscopy(TEM),temperature-programmed reduction with hydrogen(H2-TPR),and X-ray photoelectron spectroscopy(XPS).The results indicate that the improved catalytic performance is attributed to the stronger interaction between Pd and Mg(Al)Zr-MMO/γ-Al2O3,smaller Pd particle size and higher Pd dispersion.This work develops an effective method to synthesize highly dispersed Pd nanoparticles based on the layered double hydroxides(LDHs)precursor.
基金the Hebei Key Research and Development Program,China(No.20374202D)the Hebei High Level Talent Team Building,China(No.205A1104H).
文摘Due to the oxygen storage and release properties,cerium zirconium mixed oxides are recognized as the key material in automotive three-way catalysts.To reveal the effects of co-precipitation temperature on structure,physical and chemical properties of multi-doped cerium zirconium mixed oxides,a series of La and Y doped cerium zirconium mixed oxides(CZLYs)were synthesized via a co-precipitation method,and the physical and chemical properties of CZLYs were systemically characterized by XRD,N_(2) adsorption−desorption,TEM,XPS,oxygen storage capacity(OSC)and hydrogen temperature programmed reduction(H_(2)-TPR).The results show that co-precipitation temperature is an important parameter to influence the crystal size,oxygen storage capacity and thermal stability of CZLYs.When the co-precipitation temperature was 60℃,the best redox properties and thermal stability of CZLYs were obtained.After thermal treatment at 1100℃for 10 h,the specific surface area and oxygen storage capacity of the corresponding aged sample were 15.42 m^(2)/g and 497.7μmol/g,respectively.In addition,a mechanism was proposed to reveal the effects of co-precipitation temperature on the structure and properties of CZLYs.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA23050104)the National Natural Science Foundation of China(Nos.41776090,41976032)+1 种基金the Key Research and Development Program of Shandong Province(No.2018GHY115038)the AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology。
文摘Marine biofouling is an expensive problem that needs evolved chemical or physical antifouling strategies.However,most of the current antifouling materials that would damage the environment through metal leaching and bacteria resistance are being halted.Nanozyme is one kind of environmental antifouling materials through generating reactive oxygen species(ROS).We prepared various contents of CeO2 that could uniform disperse compounding with Co3 O4 and CoAl2 O4 to form a stable Co-Al-Ce mixed metal oxide(MMO) by a layered double hydroxide derived method.We find that coupling with CeO2 can improve the peroxidase(POx) activity.When the molar ratio of Ce is 2.5% and the calcination temperature is 200℃,the POx activity of Co-Al-Ce MMO is the best caused by the good dispersion of catalytically active components and the high specific area(150.10±4.95 m2/g).This novel Co-Al-Ce MMO also exhibits an antibacterial mode of action Gram-negative bacteria in near-neutral pH solution through generating ROS(mainly ·O2-)in the presence of H2 O2.Ce containing MMO can be utilized as potential green marine antifouling material.
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.
文摘A series of LnSrNiO_4(A_2BO_4, Ln=La, Pr, Nd, Sm, Gd) mixed oxides with K_2NiF_4 structure, in which Asite(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physicochemical properties including crystal structure, defect structure, IR spectrum, valence state of Bsite ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 ℃ the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at Asite on catalytic behavior for NO decomposition was elucidated.