The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize ...Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.展开更多
We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depressio...We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depression, Tibet. Coupled with previously published data in the region, this paper proposes new insights into the geochronological framework for the Nadigangri Formation. The deposition ages of tuffite from top to bottom in the Woruo Mountain, Quem Co and Dongqu River, are 203 Ma, 226 Ma, 221.5 Ma and 221.1 Ma, respectively. The detrital zircons yield a younger cluster of ages of 201.5-225 Ma from the conglomerate of the Quem Co Formation. The Late Triassic Nadigangri Formation defines a temporal range approximately between 201 and 225 Ma (Norian-Rhaetian), including three predominant groups of 220-225 Ma, 210-217 Ma and 201-205 Ma, which correspond with the three main rifting episodes of initial rifting, further rifting and final rifting. Positive ~Hf(t) value and low model ages in younger detrital zircons suggests a juvenile character. However, the Hf isotopes of magmatic zircons display the presence of reworked ancient crust with 1.1-1.8 Ga. These results provide strong constraints not only on the temporal range of the Late Triassic Nadigangri Formation, but also on the onset of the Qiangtang Mesozoic rift basin.展开更多
The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-east...The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326-321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326-276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5-30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO2(47.51-51.47 wt%), Al2O3(11.46-15.55 wt%), ΣFeO(8.27-9.61 wt%), MgO(13.01-15.18 wt%) and CaO(9.13-11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302-1351°C and pressures of 0.92-1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33-45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326-275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related environments locally. The final collision between the North China craton and the South Mongolian microcontinent may have lasted until ca. 230 Ma.展开更多
Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge o...Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.展开更多
U-Pb dating was conducted on different domains of zircons from metamorphosed leucosomes in Delingha ( 德令哈) complex, the lower basement rocks of the Olongbuluke (欧龙布鲁克 ) microcontinent, North Qaidam, in or...U-Pb dating was conducted on different domains of zircons from metamorphosed leucosomes in Delingha ( 德令哈) complex, the lower basement rocks of the Olongbuluke (欧龙布鲁克 ) microcontinent, North Qaidam, in order to review its complex tectonothermal history. The zircon core is comprised of highly-modified magmatic zircon relicts, the zircon mantle was produced in response to anatexis of a Late Protoproterozoic thermal event; age and isotopic composition of both the zircon core and the zircon mantle have been seriously disturbed due to the thermal event related with growth of the zircon overgrowth rim. The 207 PIV 206 Pb apparent age of the overgrowth rim was estimated to be - 1 030 Ma. This Late Mesoproterozoic thermal event has been interpreted as a response to the global Rodinia supercontinent assembly event in the Olongbuluke microcontinent, Northwest China.展开更多
The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and gar...The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.展开更多
The Mesoproterozoic Dongchuan Group that is widely exposed in Yimen area,central Yunnan Province is a series of sedimentary sort of low-grade metamorphic rocks interbedded with volcanic rocks,which are closely related...The Mesoproterozoic Dongchuan Group that is widely exposed in Yimen area,central Yunnan Province is a series of sedimentary sort of low-grade metamorphic rocks interbedded with volcanic rocks,which are closely related to the early tectonic evolution of the Earth.However,its formation era,sedimentary filling sequence,and geotectonic characteristics have always been in dispute.In this study,several rhyolitic tuffaceous slate interlayers with a centimeter-level thickness were found in the previously determined Heishan Formation of the Dongchuan Group located to the western part of Yimen-Luoci fault zone.This paper focuses on the study of the rhyolitic tuffaceous slate in Qifulangqing Village,Tongchang Township,Yimen County.LA-ICP-MS zircon dating was conducted,achieving the crystallization age of magma of 2491±15 Ma and the metamorphic ages of about 2.3 Ga,2.0 Ga,and 1.8 Ga for the first time.Meanwhile,according to in-situ Hf isotope analysis,the zirconεHf(t)values were determined to range from−3.0 to 7.6,with an average of 2.7.Furthermore,the first-stage Hf model age(TDM1)was determined to be 2513−2916 Ma,indicating that the provenance of the rhyolitic tuffaceous slate is the depleted mantle or juvenile crust between the Middle Mesoarchean and the Late Neoarchean.Therefore,it is believed that the strata of the slate were deposited in the Late Neoarchean,instead of the Mesoproterozoic as determined by previous researchers.Accordingly,it is not appropriate to group the strata into the Mesoproterozoic Dongchuan Group.Instead,they should be classified as the Maolu Formation of the Neoarchean Puduhe Group given the lithologic association and regional information.Furthermore,the magma ages of 2491±15 Ma are highly consistent with the eras of the large-scale Late Neoarchean orogenic magmatic activities on the northern margin of the Yangtze Craton,and thus reflect the orogenic process consisting of subduction and collision from Late Neoarchean to Early Paleoproterozoic.The magmatic activities during this period were possibly caused by the convergence of the supercontinent Kenorland.Meanwhile,the metamorphic ages of 2.3 Ga,2.0 Ga,and 1.8 Ga are highly consistent with three metamorphic ages of 2.36 Ga,1.95 Ga,and 1.85 Ga of the northern margin of the Yangtze Craton,indicating that the strata experienced Paleoproterozoic tectonic-thermal events.The study area is located on the eastern margin of Qinghai-Tibet Plateau,and thus was possibly re-transformed by magmatism subjected to the subduction of the Meso-Tethys Ocean during the Early Cretaceous.The discoveries made in this study will provide strong petrological and chronological evidence for analyzing the early crustal evolution of the Yangtze block.展开更多
In Lingyuan region of West Liaoning Province, the Zhangjiakou Formation (J_3z) and the Yixian Formation (K_1y) display an angular unconformity. That is, the Lower Mesozoic strata of the Zhangjiakou Formation are ENE (...In Lingyuan region of West Liaoning Province, the Zhangjiakou Formation (J_3z) and the Yixian Formation (K_1y) display an angular unconformity. That is, the Lower Mesozoic strata of the Zhangjiakou Formation are ENE (near E-W) oriented, while the overlying strata of the Yixian Formation exhibit an NNE orientation. The results of LA-ICP-MS zircon U-Pb ages show the Zhangjiakou Formation formed from about 130 Ma to 132 Ma in Lingyuan and 135 Ma to 136 Ma in Luanping (North Hebei Province), respectively. Three conclusions can be drawn: (1) The Zhangjiakou Formation in Lingyuan is comparable to that in Luanping, with the volcanic rocks of the Zhangjiakou Formation from Lingyuan being younger than those from Luanping. (2) 5-6 Ma difference between the top of the Zhangjiakou Formation and the bottom of the Yixian Formation in Lingyuan proves the angular unconformity between the two formations; and it reflects that the 5-6 Ma interval period is the main period of the transition of tectonic framework in Mesozoic in North Hebei and West Liaoning. In the interval period, the magmatic action went up to high tide in Mesozoic in the northeast of China. Moreover, after the interval period, the “Rehe fauna” developed into “erupted” period. This reflects that the interval period is also an important biological interface in Northern Hebei and Western Liaoning. (3) The Dabeigou Formation in Luanping should correspond to the upper part of the Zhangjiakou Formation, but not to the lower part of the Yixian Formation.展开更多
Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Centr...Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.展开更多
The Central Asian Orogenic Belt(CAOB)is regarded as the world's largest and long-lived Phanerozoic accretionary orogen,which has recorded a long history of multiple subduction-accretion events during the Neoproter...The Central Asian Orogenic Belt(CAOB)is regarded as the world's largest and long-lived Phanerozoic accretionary orogen,which has recorded a long history of multiple subduction-accretion events during the Neoproterozoic to Mesozoic.The CAOB was formed by the progressive subduction of the Paleo-Asian Ocean(PAO).However,the final closure time of the PAO is still controversial,ranging from the Late Devonian to the Early-Middle Triassic(Zhang et al.,2018).展开更多
In this study,element geochemistry and zircon chronology are used to analyze the Oligocene sediments in the Baiyun Sag,Zhujiang River Mouth Basin.The experimental results are discussed with respect to weathering condi...In this study,element geochemistry and zircon chronology are used to analyze the Oligocene sediments in the Baiyun Sag,Zhujiang River Mouth Basin.The experimental results are discussed with respect to weathering conditions,parent rock lithologies,and provenances.The chemical index of alteration and the chemical index of weathering values of mudstone samples from the lower Oligocene Enping Formation indicate that clastic particles in the study area underwent moderate weathering.Mudstone samples exhibit relatively enriched light rare earth elements and depleted heavy rare earth elements,"V"-shaped negative Eu anomalies,and negligible Ce anomalies.The rare earth element distribution curves are obviously right-inclined,with shapes and contents similar to those of post-Archean Australian shale and upper continental crust,indicating that the samples originated from acid rocks in the upper crust.The Hf-La/Th and La/Sc-Co/Th diagrams show this same origin for the sediments in the study area.For the samples from the upper Enping deltas,the overall age spectrum shows four major age peaks ca.59–68 Ma,98–136 Ma,153–168 Ma and 239–260 Ma.For the Zhuhai Formation samples,the overall age spectrum shows three major age peaks ca.149 Ma,252 Ma and 380 Ma.The detrital zircon shapes and U-Pb ages reveal that during Oligocene sedimentation,the sediments on the northwestern margin of the Baiyun Sag were supplied jointly from two provenances:Precambrian-Paleozoic metamorphic rocks in the extrabasinal South China fold zone and Mesozoic volcanic rocks in the intrabasinal Panyu Low Uplift,and the former supply became stronger through time.Thus,the provenance of the Oligocene deltas experienced a transition from an early proximal intrabasinal source to a late distal extrabasinal source.展开更多
Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Hu...Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan.展开更多
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide ...Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.展开更多
The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic...The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic mélange belt(HXOMB) is distributed in the heart of the Beishan Orogen, the Shuangyingshan and Minshui-Hanshan blocks being distributed in the south and north of the HXOMB respectively, and a large number of Early Paleozoic geological units are exposed on the blocks. According to the zircon age populations of the metasandstones in the Baiyunshan area recovered in this paper, when compared with the zircon age populations of the Paleozoic metasandstones reported in the Niujuanzi and Hanshan areas, we found that the metasandstones of the Shuangyingshan Block have age peaks at c. 598 Ma, 742 Ma, 828 Ma, 941 Ma, 990 Ma, 1168 Ma, 1636 Ma, 2497 Ma with non-significant age populations of 1500–1300 Ma, showing a possible affinity with the Tarim Craton;the metasandstones of the Minshui-Hanshan Block have age peaks at c. 606 Ma, 758 Ma, 914 Ma, 1102 Ma, 1194 Ma, 1304 Ma, 1672 Ma with significant age populations of 1500-1300 Ma, showing a possible affinity with the Chinese Central Tianshan Block. Therefore, the HXOMB of the Beishan Orogen is of great significance in plate segmentation, which separates the Tarim Craton in the south and the Chinese Central Tianshan Block in the north. Based on the evolutionary process of the Hongliuhe-Xichangjing ocean in the Beishan Orogen, we believe that break-up and convergence can be recognized as having occurred twice between the Chinese Central Tianshan Block and the Tarim Craton since the Mesoproterozoic in the Beishan area. This was related firstly to the break-up of the Columbia Supercontinent and the convergence of the Rodinia Supercontinent, mainly during the Middle Mesoproterozoic to Early Neoproterozoic, and secondly to the opening and closing of the Hongliuhe-Xichangjing ocean, mainly during the Early Paleozoic.展开更多
Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed with...Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed within some continental LIPs are felsic and rnafic plutonic and volcanic rocks. Although their volumes are minor compared to the flood basalts, the plutonic rocks of continental LIPs are often associated with economic deposits of precious metals. Within the Permian Tarim LIP of NW China, there are at least two layered ultramafic-mafic intrusions (e.g. Wajilitag and Piqiang) contain economically important Fe- Ti-V oxide deposits. Spatially associated with these layered ultramafic-mafic intrusions are syenitic and granitic plutons, which have chemical characteristics of A- type granitoids.展开更多
Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,g...Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma.展开更多
Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generate...Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.展开更多
Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geoch...Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U-Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies(mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton,involve lower T and/or higher P conditions at the magmatic source according to experimental studies.These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 士 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 土 1.5 Ma to188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages(around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for noninherited ages and gave very close mean ages(within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure,geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U-Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units,together with the evidences depicted by the geochemistry and field relations.展开更多
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha...Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.展开更多
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
基金supported by the National Natural Science Foundation of China(No.30670138)
文摘Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.
基金funded by the National Natural Science Foundation of China(Grant No.41502112 and 41702119)a project program under China Geological Survey(No.DD20160159)
文摘We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depression, Tibet. Coupled with previously published data in the region, this paper proposes new insights into the geochronological framework for the Nadigangri Formation. The deposition ages of tuffite from top to bottom in the Woruo Mountain, Quem Co and Dongqu River, are 203 Ma, 226 Ma, 221.5 Ma and 221.1 Ma, respectively. The detrital zircons yield a younger cluster of ages of 201.5-225 Ma from the conglomerate of the Quem Co Formation. The Late Triassic Nadigangri Formation defines a temporal range approximately between 201 and 225 Ma (Norian-Rhaetian), including three predominant groups of 220-225 Ma, 210-217 Ma and 201-205 Ma, which correspond with the three main rifting episodes of initial rifting, further rifting and final rifting. Positive ~Hf(t) value and low model ages in younger detrital zircons suggests a juvenile character. However, the Hf isotopes of magmatic zircons display the presence of reworked ancient crust with 1.1-1.8 Ga. These results provide strong constraints not only on the temporal range of the Late Triassic Nadigangri Formation, but also on the onset of the Qiangtang Mesozoic rift basin.
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41930215, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSWSYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326-321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326-276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5-30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO2(47.51-51.47 wt%), Al2O3(11.46-15.55 wt%), ΣFeO(8.27-9.61 wt%), MgO(13.01-15.18 wt%) and CaO(9.13-11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302-1351°C and pressures of 0.92-1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33-45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326-275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related environments locally. The final collision between the North China craton and the South Mongolian microcontinent may have lasted until ca. 230 Ma.
文摘Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.
基金The paper is supported by Key Project ( No .104039) and Special Doc-toral Project (No .20050491506) from the Ministry of Education , China ,the Open Research Program of the Key Laboratory of Continental Dynamics , Northwest University ,and NSFC Special Grant for National Education Base of Geology (No .J0530147) .
文摘U-Pb dating was conducted on different domains of zircons from metamorphosed leucosomes in Delingha ( 德令哈) complex, the lower basement rocks of the Olongbuluke (欧龙布鲁克 ) microcontinent, North Qaidam, in order to review its complex tectonothermal history. The zircon core is comprised of highly-modified magmatic zircon relicts, the zircon mantle was produced in response to anatexis of a Late Protoproterozoic thermal event; age and isotopic composition of both the zircon core and the zircon mantle have been seriously disturbed due to the thermal event related with growth of the zircon overgrowth rim. The 207 PIV 206 Pb apparent age of the overgrowth rim was estimated to be - 1 030 Ma. This Late Mesoproterozoic thermal event has been interpreted as a response to the global Rodinia supercontinent assembly event in the Olongbuluke microcontinent, Northwest China.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos. 41030423,41072068 and 40872071)National Basic Research Program of China (Grant No. 2006CB403502)+2 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University (Grant No. BJ091349)National Found for Fostering Talents of Basic Sciences (Grant No. J0830519)Graduate Innovation and Creativity Funds of Northwest University,China (Grant No. 10YZZ24)
文摘The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.
基金The work was financially supported by Project of 1∶50000 Regional Geological Survey of Samaki,Yinmin,Guicheng and Shugu Sheets in Yunnan Province by Land and Resources Department of Yunnan Province(D201905)Project of 1∶50000 Regional Geological Survey of Erjie,Yimen,Mingyihe and Shangpubei Sheets in Yunnan Province(DD20160017)Regional Geological Survey Area Summary and Service Product Development in Yunnan Province by China Geological Survey(121201102000150012-02).
文摘The Mesoproterozoic Dongchuan Group that is widely exposed in Yimen area,central Yunnan Province is a series of sedimentary sort of low-grade metamorphic rocks interbedded with volcanic rocks,which are closely related to the early tectonic evolution of the Earth.However,its formation era,sedimentary filling sequence,and geotectonic characteristics have always been in dispute.In this study,several rhyolitic tuffaceous slate interlayers with a centimeter-level thickness were found in the previously determined Heishan Formation of the Dongchuan Group located to the western part of Yimen-Luoci fault zone.This paper focuses on the study of the rhyolitic tuffaceous slate in Qifulangqing Village,Tongchang Township,Yimen County.LA-ICP-MS zircon dating was conducted,achieving the crystallization age of magma of 2491±15 Ma and the metamorphic ages of about 2.3 Ga,2.0 Ga,and 1.8 Ga for the first time.Meanwhile,according to in-situ Hf isotope analysis,the zirconεHf(t)values were determined to range from−3.0 to 7.6,with an average of 2.7.Furthermore,the first-stage Hf model age(TDM1)was determined to be 2513−2916 Ma,indicating that the provenance of the rhyolitic tuffaceous slate is the depleted mantle or juvenile crust between the Middle Mesoarchean and the Late Neoarchean.Therefore,it is believed that the strata of the slate were deposited in the Late Neoarchean,instead of the Mesoproterozoic as determined by previous researchers.Accordingly,it is not appropriate to group the strata into the Mesoproterozoic Dongchuan Group.Instead,they should be classified as the Maolu Formation of the Neoarchean Puduhe Group given the lithologic association and regional information.Furthermore,the magma ages of 2491±15 Ma are highly consistent with the eras of the large-scale Late Neoarchean orogenic magmatic activities on the northern margin of the Yangtze Craton,and thus reflect the orogenic process consisting of subduction and collision from Late Neoarchean to Early Paleoproterozoic.The magmatic activities during this period were possibly caused by the convergence of the supercontinent Kenorland.Meanwhile,the metamorphic ages of 2.3 Ga,2.0 Ga,and 1.8 Ga are highly consistent with three metamorphic ages of 2.36 Ga,1.95 Ga,and 1.85 Ga of the northern margin of the Yangtze Craton,indicating that the strata experienced Paleoproterozoic tectonic-thermal events.The study area is located on the eastern margin of Qinghai-Tibet Plateau,and thus was possibly re-transformed by magmatism subjected to the subduction of the Meso-Tethys Ocean during the Early Cretaceous.The discoveries made in this study will provide strong petrological and chronological evidence for analyzing the early crustal evolution of the Yangtze block.
文摘In Lingyuan region of West Liaoning Province, the Zhangjiakou Formation (J_3z) and the Yixian Formation (K_1y) display an angular unconformity. That is, the Lower Mesozoic strata of the Zhangjiakou Formation are ENE (near E-W) oriented, while the overlying strata of the Yixian Formation exhibit an NNE orientation. The results of LA-ICP-MS zircon U-Pb ages show the Zhangjiakou Formation formed from about 130 Ma to 132 Ma in Lingyuan and 135 Ma to 136 Ma in Luanping (North Hebei Province), respectively. Three conclusions can be drawn: (1) The Zhangjiakou Formation in Lingyuan is comparable to that in Luanping, with the volcanic rocks of the Zhangjiakou Formation from Lingyuan being younger than those from Luanping. (2) 5-6 Ma difference between the top of the Zhangjiakou Formation and the bottom of the Yixian Formation in Lingyuan proves the angular unconformity between the two formations; and it reflects that the 5-6 Ma interval period is the main period of the transition of tectonic framework in Mesozoic in North Hebei and West Liaoning. In the interval period, the magmatic action went up to high tide in Mesozoic in the northeast of China. Moreover, after the interval period, the “Rehe fauna” developed into “erupted” period. This reflects that the interval period is also an important biological interface in Northern Hebei and Western Liaoning. (3) The Dabeigou Formation in Luanping should correspond to the upper part of the Zhangjiakou Formation, but not to the lower part of the Yixian Formation.
基金co-supported by the National Natural Science Foundation of China(grant No.41302070)the Fundamental Research Funds for the Central Universities (grants No.310827172004 and 310827173401)Geological Exploration Fund Project of Qinghai Province (grant No.2012209)
文摘Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.
基金financially supported by the projects of the China Geological Survey (grants No. 1212011220458, 1212011220492)
文摘The Central Asian Orogenic Belt(CAOB)is regarded as the world's largest and long-lived Phanerozoic accretionary orogen,which has recorded a long history of multiple subduction-accretion events during the Neoproterozoic to Mesozoic.The CAOB was formed by the progressive subduction of the Paleo-Asian Ocean(PAO).However,the final closure time of the PAO is still controversial,ranging from the Late Devonian to the Early-Middle Triassic(Zhang et al.,2018).
基金The National Natural Science Foundation of China under contract No.91528303the National Science and Technology Major Project under contract Nos 2016ZX05026,2011ZX05025 and 2008ZX05025+1 种基金the National Basic Research Program(973 Program)of China under contract No.2009CB219400the Foundation for Excellent Youth Scholars of NIEER,CAS
文摘In this study,element geochemistry and zircon chronology are used to analyze the Oligocene sediments in the Baiyun Sag,Zhujiang River Mouth Basin.The experimental results are discussed with respect to weathering conditions,parent rock lithologies,and provenances.The chemical index of alteration and the chemical index of weathering values of mudstone samples from the lower Oligocene Enping Formation indicate that clastic particles in the study area underwent moderate weathering.Mudstone samples exhibit relatively enriched light rare earth elements and depleted heavy rare earth elements,"V"-shaped negative Eu anomalies,and negligible Ce anomalies.The rare earth element distribution curves are obviously right-inclined,with shapes and contents similar to those of post-Archean Australian shale and upper continental crust,indicating that the samples originated from acid rocks in the upper crust.The Hf-La/Th and La/Sc-Co/Th diagrams show this same origin for the sediments in the study area.For the samples from the upper Enping deltas,the overall age spectrum shows four major age peaks ca.59–68 Ma,98–136 Ma,153–168 Ma and 239–260 Ma.For the Zhuhai Formation samples,the overall age spectrum shows three major age peaks ca.149 Ma,252 Ma and 380 Ma.The detrital zircon shapes and U-Pb ages reveal that during Oligocene sedimentation,the sediments on the northwestern margin of the Baiyun Sag were supplied jointly from two provenances:Precambrian-Paleozoic metamorphic rocks in the extrabasinal South China fold zone and Mesozoic volcanic rocks in the intrabasinal Panyu Low Uplift,and the former supply became stronger through time.Thus,the provenance of the Oligocene deltas experienced a transition from an early proximal intrabasinal source to a late distal extrabasinal source.
基金supported by the Geological Exploration Foundation Project of Xinjiang(grants No.Y15-1-LQ05 and No.T15-2-LQ13)Special Project of National Geological Mineral Investigation and Evaluation(grant No.DD20160345-04)
文摘Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41603053)the National Key R & D Program of China (No. 2018YFC0604206)
文摘Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.
基金supported by the Geological Survey of China(DD20160039,DD20190038)。
文摘The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic mélange belt(HXOMB) is distributed in the heart of the Beishan Orogen, the Shuangyingshan and Minshui-Hanshan blocks being distributed in the south and north of the HXOMB respectively, and a large number of Early Paleozoic geological units are exposed on the blocks. According to the zircon age populations of the metasandstones in the Baiyunshan area recovered in this paper, when compared with the zircon age populations of the Paleozoic metasandstones reported in the Niujuanzi and Hanshan areas, we found that the metasandstones of the Shuangyingshan Block have age peaks at c. 598 Ma, 742 Ma, 828 Ma, 941 Ma, 990 Ma, 1168 Ma, 1636 Ma, 2497 Ma with non-significant age populations of 1500–1300 Ma, showing a possible affinity with the Tarim Craton;the metasandstones of the Minshui-Hanshan Block have age peaks at c. 606 Ma, 758 Ma, 914 Ma, 1102 Ma, 1194 Ma, 1304 Ma, 1672 Ma with significant age populations of 1500-1300 Ma, showing a possible affinity with the Chinese Central Tianshan Block. Therefore, the HXOMB of the Beishan Orogen is of great significance in plate segmentation, which separates the Tarim Craton in the south and the Chinese Central Tianshan Block in the north. Based on the evolutionary process of the Hongliuhe-Xichangjing ocean in the Beishan Orogen, we believe that break-up and convergence can be recognized as having occurred twice between the Chinese Central Tianshan Block and the Tarim Craton since the Mesoproterozoic in the Beishan area. This was related firstly to the break-up of the Columbia Supercontinent and the convergence of the Rodinia Supercontinent, mainly during the Middle Mesoproterozoic to Early Neoproterozoic, and secondly to the opening and closing of the Hongliuhe-Xichangjing ocean, mainly during the Early Paleozoic.
基金financially supported by the National Natural Science Foundation of China (Grant No.41703030)research grants from the East China University of Technology (Grants No.DHBK2015323 and RGET1504)the Jiangxi Provincial Department of Education (Grant No.GJJ150556)
文摘Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed within some continental LIPs are felsic and rnafic plutonic and volcanic rocks. Although their volumes are minor compared to the flood basalts, the plutonic rocks of continental LIPs are often associated with economic deposits of precious metals. Within the Permian Tarim LIP of NW China, there are at least two layered ultramafic-mafic intrusions (e.g. Wajilitag and Piqiang) contain economically important Fe- Ti-V oxide deposits. Spatially associated with these layered ultramafic-mafic intrusions are syenitic and granitic plutons, which have chemical characteristics of A- type granitoids.
基金supported by the China Geological Survey(Grant No.DD20221649)National Natural Science Foundation of China(Grant Nos.42230308,42072266)+3 种基金Bureau of Geological Exploration and Development of Qinghai Province(Grant No.[2022]32)the Xingdian Scholar Fund of Yunnan Province(Grant No.C6213001155)China Postdoctoral Science Foundation(Grant No.2021M691702)High-level Talents Project of Qinghai Province.
文摘Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma.
基金jointly supported by the National Natural Science Foundation of China(4220207742103025)+5 种基金the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment(ZS2209ZS2106)the Opening Foundation of Key Laboratory of Mineral Resources in Western China(Gansu Province)(MRWCGS-2021-01)the Natural Science Foundation of Gansu Province(22JR5RA440)the Fundamental Research Funds for the Central Universities(LZUJBKY-2022-42)the Guiding Special Funds of“Double First-Class(First-Class University&First-Class Disciplines)”(561119201)of Lanzhou University,China。
文摘Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.
基金funded with FONDECYT Project No. 11140722 of CONICYTthe fund support of DIUDA 2013-22268 and DIUDA 201422273 projects
文摘Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U-Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies(mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton,involve lower T and/or higher P conditions at the magmatic source according to experimental studies.These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 士 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 土 1.5 Ma to188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages(around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for noninherited ages and gave very close mean ages(within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure,geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U-Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units,together with the evidences depicted by the geochemistry and field relations.
基金financially supported by the National Key Research and Development Program of China(grant No.2016YFC0600310)the 973 Project(2015CB452600,2011CB4031006)+2 种基金the National Natural Science Foundation of China(grants No.41872083,41472076)the Program of the China Geological Survey(grants No.DD20160024–07,DD20179172)the China Fundamental Research Funds for the Central Universities(grant No.2652018133).
文摘Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.