On the basis of actual situations of Guangdong Province, using Factor Analysis Approach and Quantitative Analysis Method, we built index system by four factors, namely, extent of farmland connectivity, local financial...On the basis of actual situations of Guangdong Province, using Factor Analysis Approach and Quantitative Analysis Method, we built index system by four factors, namely, extent of farmland connectivity, local financial support, grain production capacity and farmland consolidation potential. Finally, we obtained that the areas with total scores of evaluation higher than 50 points are key construction areas of high-standard capital farmland in Guangdong Province. In total, there are 40 key construction areas, including 16 in plain areas of the Pearl River Delta, 9 in coastal regions of east of Guangdong, 10 in coastal regions of west of Guangdong, and 5 in northwest mountainous regions of Guangdong. Besides, we put forward construction direction of these 4 capital farmland areas.展开更多
Structural transfer zones in a half-graben rift basin play a significant role in controlling sandy sediments and providing a target for hydrocarbon exploration. Previous studies have classified the transfer zone in la...Structural transfer zones in a half-graben rift basin play a significant role in controlling sandy sediments and providing a target for hydrocarbon exploration. Previous studies have classified the transfer zone in lacustrine environments into two different patterns: synthetic approaching transfer zones and synthetic overlapping transfer zones. However, the evolution of the depositional pattern and the controlling factors of the above transfer zones are still unclear. In the Fushan Sag, the northern South China Sea, an overlapping transfer zone developed in the early Eocene Epoch, while a synthetic approaching transfer zone developed in the late Eocene, due to tectonic uplift. This evolutionary process provided an opportunity to study the stacking pattern of strata architectural variability and facies distribution in the structural transfer zone of the Eocene lacustrine basin. In this study, following the indications of the oriented sedimentary structures in core samples and heavy mineral assemblages of 18 wells, the evolution of the paleo-hydrodynamic distribution during the early and late Eocene has been reconstructed. The sequence-stratigraphy was then divided and the sand body parameters calculated, according to the seismic data and well log interpretations. During the early Eocene, the lake level was at a low stand, the faults broken displacement in the East block being over 50 m. The prograding delta and turbidites are oriented perpendicular to the structural transfer zone. According to the quantitative analysis of the flow rate and the depositional parameters, we speculate that gravity transportation of the sediment and the sediment-supply are the dominating factors during this period. Up to the late Eocene, the rising lake level and the decreased fault displacement leads the flow to divert to a NE-direction, resulting in it being parallel to the axis of the transfer zone. Thus, we speculate that the accommodation space is predominant in this period. In comparison with the above two periods, a braided river delta with an isolated sand body and turbidites developing in the deep area is prominent in the overlapping transfer zone, while a meandering river delta is characteristic of the synthetic approaching transfer zone.展开更多
This paper presents a sequential approach with matrix framework for solving various kinds of economic dispatch problems. The objective of the economic dispatch problems of electrical power generation is to schedule th...This paper presents a sequential approach with matrix framework for solving various kinds of economic dispatch problems. The objective of the economic dispatch problems of electrical power generation is to schedule the committed generating units output so as to meet the required load demand while satisfying the system equality and inequality constraints. This is a maiden approach developed to obtain the optimal dispatches of generating units for all possible load demands of power system in a single execution. The feasibility of the proposed method is demonstrated by solving economic load dispatch problem, combined economic and emission dispatch problem, multiarea economic dispatch problem and economic dispatch problem with multiple fuel options. The proposed methodology is tested with different scale of power systems. The generating unit operational constraints are also considered. The simulation results obtained by proposed methodology for various economic dispatch problems are compared with previous literatures in terms of solution quality. Numerical simulation results indicate an improvement in total cost saving and hence the superiority of the proposed method is also revealed for economic dispatch problems.展开更多
基金Supported by the Project of Monitoring System for Farmland Quality Grade of Guangdong Province (2011B020313020)
文摘On the basis of actual situations of Guangdong Province, using Factor Analysis Approach and Quantitative Analysis Method, we built index system by four factors, namely, extent of farmland connectivity, local financial support, grain production capacity and farmland consolidation potential. Finally, we obtained that the areas with total scores of evaluation higher than 50 points are key construction areas of high-standard capital farmland in Guangdong Province. In total, there are 40 key construction areas, including 16 in plain areas of the Pearl River Delta, 9 in coastal regions of east of Guangdong, 10 in coastal regions of west of Guangdong, and 5 in northwest mountainous regions of Guangdong. Besides, we put forward construction direction of these 4 capital farmland areas.
基金sponsored by the National Natural Science Foundation of China(No.41572080)the Major State Science and Technology Research Program(No.2016ZX05024002-002)China Scholarship Council(CSC)(No.201906400071)。
文摘Structural transfer zones in a half-graben rift basin play a significant role in controlling sandy sediments and providing a target for hydrocarbon exploration. Previous studies have classified the transfer zone in lacustrine environments into two different patterns: synthetic approaching transfer zones and synthetic overlapping transfer zones. However, the evolution of the depositional pattern and the controlling factors of the above transfer zones are still unclear. In the Fushan Sag, the northern South China Sea, an overlapping transfer zone developed in the early Eocene Epoch, while a synthetic approaching transfer zone developed in the late Eocene, due to tectonic uplift. This evolutionary process provided an opportunity to study the stacking pattern of strata architectural variability and facies distribution in the structural transfer zone of the Eocene lacustrine basin. In this study, following the indications of the oriented sedimentary structures in core samples and heavy mineral assemblages of 18 wells, the evolution of the paleo-hydrodynamic distribution during the early and late Eocene has been reconstructed. The sequence-stratigraphy was then divided and the sand body parameters calculated, according to the seismic data and well log interpretations. During the early Eocene, the lake level was at a low stand, the faults broken displacement in the East block being over 50 m. The prograding delta and turbidites are oriented perpendicular to the structural transfer zone. According to the quantitative analysis of the flow rate and the depositional parameters, we speculate that gravity transportation of the sediment and the sediment-supply are the dominating factors during this period. Up to the late Eocene, the rising lake level and the decreased fault displacement leads the flow to divert to a NE-direction, resulting in it being parallel to the axis of the transfer zone. Thus, we speculate that the accommodation space is predominant in this period. In comparison with the above two periods, a braided river delta with an isolated sand body and turbidites developing in the deep area is prominent in the overlapping transfer zone, while a meandering river delta is characteristic of the synthetic approaching transfer zone.
文摘This paper presents a sequential approach with matrix framework for solving various kinds of economic dispatch problems. The objective of the economic dispatch problems of electrical power generation is to schedule the committed generating units output so as to meet the required load demand while satisfying the system equality and inequality constraints. This is a maiden approach developed to obtain the optimal dispatches of generating units for all possible load demands of power system in a single execution. The feasibility of the proposed method is demonstrated by solving economic load dispatch problem, combined economic and emission dispatch problem, multiarea economic dispatch problem and economic dispatch problem with multiple fuel options. The proposed methodology is tested with different scale of power systems. The generating unit operational constraints are also considered. The simulation results obtained by proposed methodology for various economic dispatch problems are compared with previous literatures in terms of solution quality. Numerical simulation results indicate an improvement in total cost saving and hence the superiority of the proposed method is also revealed for economic dispatch problems.