A novel high sensihtity, small-volume photothermal intheence detector has beenintroduced for capillap zone electrophoresis separation analysis. The utility of thes sdriulboconstecheque for momtomp chelating reachon of...A novel high sensihtity, small-volume photothermal intheence detector has beenintroduced for capillap zone electrophoresis separation analysis. The utility of thes sdriulboconstecheque for momtomp chelating reachon of light rare earth with tribromoarsenazo has beenreported.展开更多
The optimized nitrogen fertilization location differs in different rice-growing regions. We optimized nitrogen deep-point application in root-growing zone(NARZ) for transplanted rice in subtropical China. Field plot...The optimized nitrogen fertilization location differs in different rice-growing regions. We optimized nitrogen deep-point application in root-growing zone(NARZ) for transplanted rice in subtropical China. Field plot experiments were conducted over two years(2014–2015) in a double-rice cropping system to evaluate the effects of nitrogen(N) fertilizer location on grain yield and N use efficiency(NUE). Four different nitrogen deep-point application methods(DN) were compared with traditional broadcast application(BN) using granular urea. The results showed that grain yield, recovery efficiency of N(REN), agronomic efficiency of N(AEN), and partial factor productivity of N(PFP_N) significantly increased 10.3–63.4, 13.7–56.7, 24.7–201.9 and 10.2–63.4%, respectively, in DN treatment compared to BN, respectively. We also find that DN treatments increased grain yield as well as grain N content, and thus grain quality, in comparison with conventional BN treatment. Correlation analysis indicated that significant improvement in grain yield and NUE mainly resulted from increases in productive panicle number and grain N content. In our proposed NARZ method, granular urea should be placed 0 to 5 cm around the rice seeding at a 12-cm depth druing rice transplanting. In NARZ, balanced application of N, P and K further improved grain yield and NUE over treatments with a single N deep-point application. High N uptake by the rice plant did not cause significant soil fertility depletion, demonstrating that this method could guarantee sustainable rice production.展开更多
Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial var...Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.展开更多
Anewsimplemathematicalmethod has been proposed to predict rock stress around a noncircular tunnel and themethod is calibrated and validatedwith a numerical model.It can be found that the tunnel shapes and polar angles...Anewsimplemathematicalmethod has been proposed to predict rock stress around a noncircular tunnel and themethod is calibrated and validatedwith a numerical model.It can be found that the tunnel shapes and polar angles affect the applicable zone of the theoretical model significantly and the applicable zone of a rectangular tunnel was obtained using this method.The method can be used to predict the values of the concentrated stress,and to analyze the change rate of rock stress and back to calculate the mechanical boundary condition in the applicable zone.The results of the stress change rate indicate that the horizontal stress is negatively related to the vertical boundary load and positively related to the horizontal boundary load.The vertical stress is negatively related to the horizontal boundary load and positively related to the vertical boundary load.These findings can be used to explain the evolution of the vertical increment in stress obtained with field-based borehole stress monitoring.展开更多
文摘A novel high sensihtity, small-volume photothermal intheence detector has beenintroduced for capillap zone electrophoresis separation analysis. The utility of thes sdriulboconstecheque for momtomp chelating reachon of light rare earth with tribromoarsenazo has beenreported.
基金financially supported by the National Basic Research Program of China(2013CB127401)the National Natural Science Foundation of China(41401258)+1 种基金the Natural Science Foundation of Jiangsu Province,China(BK20131044)the Natural Science Foundation of Jiangxi Province,China(20142BAB214005)
文摘The optimized nitrogen fertilization location differs in different rice-growing regions. We optimized nitrogen deep-point application in root-growing zone(NARZ) for transplanted rice in subtropical China. Field plot experiments were conducted over two years(2014–2015) in a double-rice cropping system to evaluate the effects of nitrogen(N) fertilizer location on grain yield and N use efficiency(NUE). Four different nitrogen deep-point application methods(DN) were compared with traditional broadcast application(BN) using granular urea. The results showed that grain yield, recovery efficiency of N(REN), agronomic efficiency of N(AEN), and partial factor productivity of N(PFP_N) significantly increased 10.3–63.4, 13.7–56.7, 24.7–201.9 and 10.2–63.4%, respectively, in DN treatment compared to BN, respectively. We also find that DN treatments increased grain yield as well as grain N content, and thus grain quality, in comparison with conventional BN treatment. Correlation analysis indicated that significant improvement in grain yield and NUE mainly resulted from increases in productive panicle number and grain N content. In our proposed NARZ method, granular urea should be placed 0 to 5 cm around the rice seeding at a 12-cm depth druing rice transplanting. In NARZ, balanced application of N, P and K further improved grain yield and NUE over treatments with a single N deep-point application. High N uptake by the rice plant did not cause significant soil fertility depletion, demonstrating that this method could guarantee sustainable rice production.
文摘Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.
基金This work is supported by the National Natural Science Foundation of China through contracts Nos.51474209,51574227 and 51604268the Fundamental Research Funds for the Central Universities(No.2014XT01)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.SZBF2011-6-B35)the Research Innovation Program for College Graduates of Jiangsu Province(No.KYLX160559).
文摘Anewsimplemathematicalmethod has been proposed to predict rock stress around a noncircular tunnel and themethod is calibrated and validatedwith a numerical model.It can be found that the tunnel shapes and polar angles affect the applicable zone of the theoretical model significantly and the applicable zone of a rectangular tunnel was obtained using this method.The method can be used to predict the values of the concentrated stress,and to analyze the change rate of rock stress and back to calculate the mechanical boundary condition in the applicable zone.The results of the stress change rate indicate that the horizontal stress is negatively related to the vertical boundary load and positively related to the horizontal boundary load.The vertical stress is negatively related to the horizontal boundary load and positively related to the vertical boundary load.These findings can be used to explain the evolution of the vertical increment in stress obtained with field-based borehole stress monitoring.