期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of overburden pressure on determination of reservoir rock types using RQI/FZI,FZI^* and Winland methods in carbonate rocks 被引量:2
1
作者 Aboozar Soleymanzadeh Saeed Parvin Shahin Kord 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1403-1416,共14页
Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distin... Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distinct rock types.Generally,these methods are applied to petrophysical data that are measured at a pressure other than reservoir pressure.Since the pressure changes the pore structure of rock,the effect of overburden pressure on rock typing should be considered.In this study,porosity and permeability of 113 core samples were measured at five different pressures.To investigate the effect of pressure on determination of rock types,FZI,FZI~*and Winland methods were applied.Results indicated that although most of the samples remain in the same rock type when pressure changes,some of them show different trends.These are related to the mineralogy and changes in pore system of the samples due to pressure change.Additionally,the number of rock types increases with increasing pressure.Furthermore,the effect of overburden pressure on determination of rock types is more clearly observed in the Winland and FZI~*methods.Also,results revealed that a more precise reservoir dynamic simulation can be obtained by considering the reservoir rock typing process at reservoir conditions. 展开更多
关键词 Overburden pressure Carbonate rocks Rock type Reservoir quality index Flow zone indicator Winland method
下载PDF
A Novel Energy Lifting Approach Using J-Function and Flow Zone Indicator for Oil Fields
2
作者 M.N.Tarhuni W.R.Sulaiman +1 位作者 M.Z.Jaafar K.M.Sabil 《Energy Engineering》 EI 2022年第1期253-273,共21页
The X field is located in the southwestern part of block NX89 of Kentan Basin in Libya.This field is produced from Hailan multilayer consolidated sandstone with moderate rock property and a relatively low energy suppl... The X field is located in the southwestern part of block NX89 of Kentan Basin in Libya.This field is produced from Hailan multilayer consolidated sandstone with moderate rock property and a relatively low energy supplying.The reserve of subsurface energy sources is declining with years.Therefore,techniques were combined to achieve the energy optimization and increase hydrocarbon recovery.In order to understand the subsurface formation of the reservoir and facilitate oil production,global hydraulic element technique was used to quantify the reservoir rock types.In addition,stratigraphic modified Lorenz plot was used for reservoir layering.Reservoir heterogeneity was identified using stratigraphic modified Lorenz plot and Dykstra-Parsons coefficient.Leverett J-functionwas used to average the 13 capillary pressure curves into four main curves to represent the whole reservoir based on flow zone indicator values.Capillary pressure was calculated and plotted with normalized water saturation;a single average curve was defined to represent the rest of the curves.Water saturation was calculated using single and multiple J-functions and compared with the available logs.With multiple J-functions,the matching results were good for both high and low-quality layers,whereas using a single J-function,the match was poor,especially for low FZI layers such as H4c and H6a.Four rock types were identified for this reservoir ranging from medium to good reservoir quality and six different layers were obtained.The reservoir was heterogeneous with a Lorenz coefficient value of approximately 0.72 and a Dykstra-Parsons value of 0.70.All approaches used in this paper were validated and showed improved hydrocarbon recovery factor. 展开更多
关键词 Energy lifting special core analysis flow zone indicator reservoir heterogeneity water saturation Leverett J-function
下载PDF
Fluidizate-Explosive Occurrences in Ophiolites as Indicator of the Subduction Zone Activity: The Urals Example
3
作者 V.R.SHMELEV 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期36-38,共3页
It is known that the formation of oceanic crust occurs in different geodynamic settings,accompanying by the emergence of mantle-magmatic ophiolite complexes having a distinctive properties.In the process of mantle-cru... It is known that the formation of oceanic crust occurs in different geodynamic settings,accompanying by the emergence of mantle-magmatic ophiolite complexes having a distinctive properties.In the process of mantle-crustal evolution of the ophiolites are undergoing significant changes with the formation of peculiar(on structure and composition)rocks,sometimes with unusual mineral paragenesis.The presence of such rocks in mélange tectonic zones greatly complicates to determine their origin.In the Ural folded belt(length more than 2,000 km)separating the East European Platform and the West Siberian sedimentary basin,ophiolites are widespread forming a chain of mafic-ultramafic massifs(Fig.1)located in the allochthonous position with mélange at the bottom(Puchkov,2013).With the Urals ophiolites are associated occurrences of eclogites,jadeites,ruby and other rocks of unclear nature,sometimes regarded as potentially diamondiferous.Such formations of unclear genesis include the associating with ophiolites metabasites of higher alkalinity composing the body in the mantle peridotites of the mélange Main Uralian Fault(MUF)zone(Shmelev,2005).By this time they are determined in different parts of the fault zone,but most completely are known in the Sub Polar Urals,where are distinguished under the name of Sertynya alkaline-ultramafic complex,which is located just 25 km east of Hartes kimberlitic complex(Fig.1).Formally,its affiliation to diamond-bearing associations is confirmed by finding of grains and fragments of natural diamond in the weathering crust.A detailed study of the rock complexes shows that in reality they have a polygenic nature,combine theelements of proper magmatic and fluidizate-explosive formations,the appearance of which was interfaced with the processes at the slab-mantle wedge boundary in subduction zones.Polygenic nature of the rocks is reflected in the existence of three interrelated structural-geological units:(1)bodies and dikes of uniformmetadiabasesanddensefine-grainedmetadolerites(lamprophyres),(2)fluidal-brecciated dolerites('tuff breccias')and(3)structural weathering crust with angular or rounded fragments(blocks)of metadolerites and serpentinites.The rocks have experienced rodingitization and permeated with net of veins a vesuvianite composition.The host peridotite matrix(harzburgites and dunites)has undergone serpentinizationandchloritization.Structural relationships give grounds for distinguishing in the history of the complex formation the magmatic proper(dolerite dyke and lamprophyre intrusion)and infiltration fluidizate-explosive(metasomatic transformation of dolerite)stages.Peculiarities of petrography and mineralogy of rock complexes does not allow to compare them with lamproites and kimberlites.Metadiabases demonstrate relics of ophitic structure,as primary paragenesis is completely replaced by aggregate of chlorite,zoisite and leucoxene.Dolerites(lamprophyres)have a uniform fine-grained or porphyry structure with phenocrysts of clinopyroxene,brown amphibole and leucoxene(sphene),which are immersed in a fine-scaly aggregate of light green mica.In the rocks amphibole,garnet and vesuvian are present.Clinopyroxene corresponds to augite with moderate content of titanium and alumina(up to 3.5wt.%),showing a normal magmatic zonation in composition.Mica previously wrongly called as phlogopite,actually has an extremely ferrous composition and corresponds to biotite(annite).Amphibole is presented by magmatic titaniferous tschermakite hornblende and metamorphic(bluish)variety of sodium-calcium composition(taramite).Garnet is presented by exceptionally grossular of rodingite type.Mineralogy of weathering crust reveals similar features,but in the samples it is marked the presence of muscovite,orthoclase and weakly ferrous diopside.An important feature of the weathering crust is the presence of shear surfaces on minerals,resulting in fracturing due to internal stress,confirming the explosive nature of protolith.The bulk chemical composition of rocks is characterized by significant variations in the content of silica(30-46 wt.%)and alkalis(0-6.5 wt.%).These metabasites have consistently a low magnesia number and high titanium oxide content(1.5-3.0 wt.%).Side by side with these are been established the uniform slope REE distribution trends similar to the trend of oceanic basalts N-MORB type(Fig.2).The level of trace element compositions does not depend on variations in the alkalinity of the rocks,but clearly correlates with the titanium content.Unlike them the Hartes kimberlites demonstrate the distribution with deficit of HREE,andthe level of the elements content is correlated with the alkalinity of rocks(Mahotkin et al.,1998).Another important geochemical feature of the Sertynya complex rocks is a regular behavior of the mobile LILE elements(Cs,Rb,Ba,K).In the varieties of rocks with mica enriched by alkalis,it is recorded extremely high level of LILE,exceeding the level of contents in N-MORB basalts at 10-10000 times!In the metabasites varieties with low level of alkalinity,LILE content is sharply(except Cs)reduced to minimum values(Fig.2).The observed pattern of the element distribution is undoubtedly the result of postmagmatic fluid-metasomatic alteration of the original rocks.Tectonic position and the primary composition characteristics of the metadolerites give reason to consider them as fragments of the ophiolite sheeted dike complex(Shmelev,2005).The famous dike complexes in the ophiolite massifs of the MUF zone(east of mélange)belong to suprasubduction formations of Paleozoic age.However the obtained mainly ancient U-Pb zircon dating(up to Archean inclusive)for metadolerites of the Sertynya complex,make it possible to assume its Vendian-Early Cambrian(530-617 Ma)age.It permits to compare the Sertynya metabasites with the Vendian metaophiolites of the MUF zone in the Middle Urals(Petrov et al.,2010).It is noteworthy that similar age datings(520-550 Ma)are also established for kimberlites of the Hartes complex located to the west of ophiolites.Therefore,thepresenceofthe Vendian-Cambrian ophiolite of MOR-type in the MUF mélange zone,'changing'to the east of Ordovician ophiolites SSZ-type,seems quite possible.The obtained data allow to suggest an original interpretation of nature of the Urals fluidizate-explosive formations considering the process specifics in the subduction zones(Bebout and Barton,2002).Accordingto this model,the pre-Ordovician(?)oceanic crust has undergone transformations and deformations on the slab-mantle wedge boundary during the subduction.As a result of slab dehydration it occurred a flow of aqueous fluids,which were enriched with the extracted from sedimentary rocks the LILE elements and percolated through the mantle substrate with dolerite dyke complex.Interaction with them led to the formation of chlorite-zoisite and/or mica(biotite-bearing)fluidizates and in the presence of a gas phase-fluidizate-explosive breccias with subsequent development of weathering crust.In the surrounding peridotites an explosive process is marked by the formation of pseudokimberlite breccias.Fluidized-explosive occurrences in mantle peridotites of mélange zones should be considered as indicators of the subduction slab-mantle interaction at relatively shallow levels involving enriched LILE fluids(without melts participation),rising as the front from the subduction zone.In this interpretation,there is no need toappealtothealkaline-ultramaficor lamproit-kimberlite hypothesis of the genesis of these formations,however,the question of their potential diamondiferous remains to be open.The proposed interpretation of the fluidizate-explosive occurrences makes it possible to comprehendthat in reality the mélange is a complex formation with signs of not onlycollisional(as usually is considered),but also of earlier subduction events. 展开更多
关键词 rock The Urals Example Fluidizate-Explosive Occurrences in Ophiolites as Indicator of the Subduction Zone Activity
下载PDF
Can the ASHRAE Standard 169 zoning method be applied to country-level energy-efficient building design in China?
4
作者 Shangyu Wang Liu Yang +3 位作者 Xiangxin Meng Kailin Lyu Qimeng Cao Yan Liu 《Building Simulation》 SCIE EI CSCD 2023年第7期1041-1058,共18页
In current building thermal climate design zones of China,the zoning indicators only include temperature elements without considering the regional difference of air humidity.Therefore,building thermal design strategie... In current building thermal climate design zones of China,the zoning indicators only include temperature elements without considering the regional difference of air humidity.Therefore,building thermal design strategies in continental climate zone with low relative humidity and marine climate zone with high relative humidity cannot be distinguished by the current building thermal zoning standards.ASHRAE Standard 169 proposes dual definitions for moisture and thermal climate zones,and this method can be extended to the world,including the so-called“China Climate Zones Map”.However,the moisture climate zoning criterion is unsuitable for China’s climate characteristics after climate analysis and building performance evaluation.In present work,a novel building moisture climate zoning method is proposed.The bioclimatic chart was utilized for extracting the outline of building climate through the Gaussian KDE method.Hence,the building moisture climate was classified,the zoning indicator was obtained,and a country-level climate zones map for China was established.The results indicated that the global information matrix served as a helpful guide and reference for planning at the national level.Annual precipitation could be used as a zoning indicator to accurately reflect the regional differences of building moisture climate in China.The approach can provide new thoughts for improving the climate zoning system in current energy-efficient building design standards of China to assist the ultra-low energy consumption target. 展开更多
关键词 building climate zoning country-level energy-efficient building moisture zoning indicator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部