A reversed phase (RP)/hydrophilic interaction (HILIC)/ion exchange (IEX) mixed tri-mode stationary phase (TMSP) has been prepared via a divergent synthesis scheme starting from propylamine on silica then by amine-epox...A reversed phase (RP)/hydrophilic interaction (HILIC)/ion exchange (IEX) mixed tri-mode stationary phase (TMSP) has been prepared via a divergent synthesis scheme starting from propylamine on silica then by amine-epoxy reactions with 1,4-butanedioldiglycidyl ether and tertiary amines (N,Ndimethyldecylamine, DMDA). Its retention mechanism was found to follow RP/HILIC/IEX mixed-mode.The stop-flow test revealed that TMSP had good compatibility with 100% aqueous mobile phase. It demonstrated effective separation towards several kinds of compounds or drug molecules and their counterions within a single run.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos. 21477037, 21322502)the Outstanding Young Talent Cultivation Fund of East China University of Science and Technology
文摘A reversed phase (RP)/hydrophilic interaction (HILIC)/ion exchange (IEX) mixed tri-mode stationary phase (TMSP) has been prepared via a divergent synthesis scheme starting from propylamine on silica then by amine-epoxy reactions with 1,4-butanedioldiglycidyl ether and tertiary amines (N,Ndimethyldecylamine, DMDA). Its retention mechanism was found to follow RP/HILIC/IEX mixed-mode.The stop-flow test revealed that TMSP had good compatibility with 100% aqueous mobile phase. It demonstrated effective separation towards several kinds of compounds or drug molecules and their counterions within a single run.