Agile manufacturing is a new production mode. This pa per discusses the four problems of production management in the environment of a gile manufacturing, and some countermeasures are advanced: (1) Organization of pro...Agile manufacturing is a new production mode. This pa per discusses the four problems of production management in the environment of a gile manufacturing, and some countermeasures are advanced: (1) Organization of production. Traditional MTO production or MTS production ca n not meet the requirement of agile manufacturing which request both high produc tivity and the manufacturing flexibility. For this, the paper advances best way is to use the production organization mode of MCP (Mass Customization Production ),and some strategies of MCP are discussed. (2) Production planning. The requirement of agile manufacturing to production pl anning embodies in two facets: synchronization and flexibility. The paper su ggests that the structure and function of MRPII system should be improved in ord er to meet the demand of agile manufacturing. (3) Production control. The problem of production control is how to reduce the u ncertainty of hand over time between enterprises and increase the production syn chronization level. The paper advances some research direction on improving production ability. (4) Quality control. The problems of quality management are how to transfer the information of customer’s quality requirement between different organizations an d how to keep the consistency and stability of quality. Some countermeasures are advanced. In the end of the paper, one case advanced administrates how to utilize the thou ghts of agile manufacturing to upgrade the competition ability.展开更多
In recent years, there are many types of semantic similarity measures, which are used to measure the similarity between two concepts. It is necessary to define the differences between the measures, performance, and ev...In recent years, there are many types of semantic similarity measures, which are used to measure the similarity between two concepts. It is necessary to define the differences between the measures, performance, and evaluations. The major contribution of this paper is to choose the best measure among different similarity measures that give us good result with less error rate. The experiment was done on a taxonomy built to measure the semantic distance between two concepts in the health domain, which are represented as nodes in the taxonomy. Similarity measures methods were evaluated relative to human experts’ ratings. Our experiment was applied on the ICD10 taxonomy to determine the similarity value between two concepts. The similarity between 30 pairs of the health domains has been evaluated using different types of semantic similarity measures equations. The experimental results discussed in this paper have shown that the Hoa A. Nguyen and Hisham Al-Mubaid measure has achieved high matching score by the expert’s judgment.展开更多
在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子...在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子链路传输延时测量方法,通过专用延时测量芯片实现传输延时高分辨率、高精度测量,通过延时测量信号和目标模拟信号分时占用单根光纤的相同光传输波道,实现光子链路传输延时测量和目标模拟信号传输分时工作,从机理上满足了精确测量光子链路传输延时所需硬件条件。试验结果:表明该方法可精确测量目标模拟信号经过光子链路的传输延时,测量误差小于1 ns,比传感器的TDOA测量精度高一个数量级,满足系统对光子链路传输延时的测量精度要求。展开更多
文摘Agile manufacturing is a new production mode. This pa per discusses the four problems of production management in the environment of a gile manufacturing, and some countermeasures are advanced: (1) Organization of production. Traditional MTO production or MTS production ca n not meet the requirement of agile manufacturing which request both high produc tivity and the manufacturing flexibility. For this, the paper advances best way is to use the production organization mode of MCP (Mass Customization Production ),and some strategies of MCP are discussed. (2) Production planning. The requirement of agile manufacturing to production pl anning embodies in two facets: synchronization and flexibility. The paper su ggests that the structure and function of MRPII system should be improved in ord er to meet the demand of agile manufacturing. (3) Production control. The problem of production control is how to reduce the u ncertainty of hand over time between enterprises and increase the production syn chronization level. The paper advances some research direction on improving production ability. (4) Quality control. The problems of quality management are how to transfer the information of customer’s quality requirement between different organizations an d how to keep the consistency and stability of quality. Some countermeasures are advanced. In the end of the paper, one case advanced administrates how to utilize the thou ghts of agile manufacturing to upgrade the competition ability.
文摘In recent years, there are many types of semantic similarity measures, which are used to measure the similarity between two concepts. It is necessary to define the differences between the measures, performance, and evaluations. The major contribution of this paper is to choose the best measure among different similarity measures that give us good result with less error rate. The experiment was done on a taxonomy built to measure the semantic distance between two concepts in the health domain, which are represented as nodes in the taxonomy. Similarity measures methods were evaluated relative to human experts’ ratings. Our experiment was applied on the ICD10 taxonomy to determine the similarity value between two concepts. The similarity between 30 pairs of the health domains has been evaluated using different types of semantic similarity measures equations. The experimental results discussed in this paper have shown that the Hoa A. Nguyen and Hisham Al-Mubaid measure has achieved high matching score by the expert’s judgment.
文摘在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子链路传输延时测量方法,通过专用延时测量芯片实现传输延时高分辨率、高精度测量,通过延时测量信号和目标模拟信号分时占用单根光纤的相同光传输波道,实现光子链路传输延时测量和目标模拟信号传输分时工作,从机理上满足了精确测量光子链路传输延时所需硬件条件。试验结果:表明该方法可精确测量目标模拟信号经过光子链路的传输延时,测量误差小于1 ns,比传感器的TDOA测量精度高一个数量级,满足系统对光子链路传输延时的测量精度要求。