The discovery by the author of real magnetic charges and true anti-electrons in the atomic structures allowed him to establish that the gravitational field (GF) in reality is the vortex electromagnetic field. Dependin...The discovery by the author of real magnetic charges and true anti-electrons in the atomic structures allowed him to establish that the gravitational field (GF) in reality is the vortex electromagnetic field. Depending on the vector conditions the gravitational fields can be either paragravitational (PGF) or ferrogravitational (FGF). Masses (atoms, nucleons, etc.) emitting PGF manifest so-called attraction to each other. In fact, this process is the pressing of atoms or nucleons to each other by the forces of gravitational “Dark energy”. Namely the gravitational “Dark energy” which is formed between the masses emitting PGF and compressing of nucleons in atomic nuclei is the main force factor determining the formation of nuclear forces. Masses that emit FGF are repelled from PGF sources, for example, from the Earth. The last gravitational manifestation, discovered by the author, this is of the effect of the gravitational levitation. The atomic shell and atomic nucleus are autonomous sources of gravitational field in atomic compositions. The gravitational fields emitted these sources, by its physical parameters, are different gravitational fields, what associated with differences in the magnitudes charges of magnetic and electric particles in their compositions. The noted differences in the parameters of the GF are of reason that in atoms the process of extrusion of foreign gravitational field from the region of given gravitational source is realized. This effect should be called the effect of intra-atomic gravitational shielding (IAGS). Within the framework of this effect the shell of the atom is a kind of gravitational “insulator” that prevents the PGF of the nucleons from leaving beyond of the atom. As result of the IAGS effect, the concentration PGF of nucleons is realized only in the region of the nucleus, which leads to an increase in nuclear forces. However, the resistance of the marked “insulator” is finite and if the critical voltage PGF on the nucleus is exceeded, the complete shielding of the nucleon fields by the atomic shell is broken. As result of the leakage of a part of the PGF of nucleons beyond the atom, the density of this field in the region of the nucleus decreases significantly, which leads to a weakening of the nuclear forces and often leads to radioactivity. The effect of gravitational shielding is directly related to such a well-known concept as the mass defect of the nucleus. It is the exclusion of the gravitational field formed by the nucleons in the composition of the atomic nucleus as a result of the full IAGS effect that creates the illusion of atomic mass defect.展开更多
Though not well-known, Einstein endeavored much of his life to general-relativize quantum mechanics, (rather than quantizing gravity). Albeit he did not succeed, his legacy lives on. In this paper, we begin with the g...Though not well-known, Einstein endeavored much of his life to general-relativize quantum mechanics, (rather than quantizing gravity). Albeit he did not succeed, his legacy lives on. In this paper, we begin with the general relativistic field equations describing flat spacetime, but stimulated by vacuum energy fluctuations. In our precursor paper, after straightforward general relativistic calculations, the resulting covariant and contravariant energy-momentum tensors were identified as n-valued operators describing graviton excitation. From these two operators, we were able to generate all three boson masses (including the Higgs mass) in precise agreement as reported in the 2010 CODATA (NIST);moreover local, as-well-as large-scale, accelerated spacetimes were shown to naturally occur from this general relativized quantum physics approach (RQP). In this paper, applying the same approach, we produce an n-valued Coulombs Force Law leading to the energy spectrum for atomic hydrogen, without assuming quantized atomic radii, velocity and momentum, as Bohr did.展开更多
Gibberellins(GAs)promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa),however,the mechanism of regulating flowering is not fully understood.In this study,exogenous GA3 was applied to five-year-ol...Gibberellins(GAs)promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa),however,the mechanism of regulating flowering is not fully understood.In this study,exogenous GA3 was applied to five-year-old Luoyang Hong plants to explore responses in terms of endogenous hormones,flowering quality,and the hormone-and flowering-associated gene expression.Exogenous GA3 application significantly promoted flower bud development and new branch growth,as well as improved flowering quality.Exogenous GA3 application also stimulated the synthesis of endogenous GA3 and indole-3-acetic acid(IAA)but reduced abscisic acid(ABA)levels.To further elucidate the regulatory mechanism,eight genes for GA biosynthesis and signaling,including PsCPS,PsKS,PsGA3ox,PsGA2ox,PsGID1b,PsGID1c,PsDELLA,and PsGID2 were cloned for the first time,and sequence analysis was also performed.The results suggested that all the cloned genes have conserved structure as each homologous gene reported in the other species.Phylogenetic trees constructed by the each cloned gene showed that the phylogenetic evolutionary relationship of P.suffruticosa was closely related to Vitis vinifera.The expression patterns of the above genes,and genes for ABA and IAA biosynthetic and signaling,and the flowering time were also investigated.Most of the above genes showed higher expression in the control buds than those in the GA3 treated buds at six developmental stages,whereas the expression levels of PsSOC1 and PsSPL9 were up-regulated by GA3 treatment.The results also showed that the GA-biosynthetic and signaling pathways are conserved in tree peony,and the PsCPS,PsGA3ox,PsGA2ox,PsGID1,PsDELLA,and PsGID2 genes are necessary for feedback regulation of GAs.Furthermore,hormone changes promoted PsSOC1 and PsSPL9 expression,and repressed PsSVP expression,which contributed to the improvement flowering quality in tree peony of forcing culture.展开更多
Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its bui...Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its buildup. Ventilation was not initially recognized as an essential factor to thermal dispersion. However, as electronic circuit-boards continued to heat up, circuit failure became a problem, forcing the inclusion of miniaturized high speed fans. Later, heat sinks with fins and quiet fans were incorporated in most manufactured circuits. Now heat sinks come in the form of a fan with fans made to function as fins to disperse heat. Heat sinks absorb and radiate excess heat from circuit-boards in order to prolong the circuit’s life span. The higher the thermal conductivity of the material used the more efficient and effective the heat sink is. This paper is an attempt to theoretically design a heat sink with a temperature gradient lower than that of the circuit board’s excess heat.展开更多
An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears tha...An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day.展开更多
In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the m...In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis.展开更多
End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Severa...End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.展开更多
In this paper,we give all-sided pastic analysis of the rectangular slab with three edges simply-supported and other free.Here we discuss the following four cases:(1)The uniformly distributedload over the area a slab.(...In this paper,we give all-sided pastic analysis of the rectangular slab with three edges simply-supported and other free.Here we discuss the following four cases:(1)The uniformly distributedload over the area a slab.(2).A concentrated load act at midpoint of free edges slab.(3)A concen-trated load act at the center a slab.(4)The line load act along free edge of slab.展开更多
Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics...Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model(FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing(CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere(TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2(1%) and 3 W m-2(3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region(AMR). The results indicate that FAMIL1.1 well reproduces the summer–winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed.展开更多
We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests ...We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external(nutrient inflows) and internal(spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic(phyto-and zooplankton) and monimolimnetic(purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth af fect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at diff erent depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions(higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra-and interannual climate and weather effects will be more important for the control of meromixis stability.展开更多
In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electric...In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electrical interactions between charged microparticles (MPs), which develop as fundamental vibrations (FVs) in ether, producing the vibrational strains εand γand the resulting stresses σand τ, as percussions of ether cells (ECs) upon the MP surface. The stresses σ?and?τproduce a resultant force FP, due to the percussions which constitute the real electric force FCC. The spatial effect of ether on FP is demonstrated by an analytical method, considering the electrical interaction between MPs through various equidistant spatial paths li of FVs, modelled on the basis of the Huygens principle for waves. For this issue, we utilized a numerical calculation, which could be generalized. But this spatial effect of the ether leads at a very slow decreasing of the FP forces ratio rF when doubling the distance l, in contrast to Coulomb’s FC forces whose ratio rF?decreases accentuate with doubling l. Accordingly, the necessity of including the term ln r in the FCC force, which is limited to 1.0 for doubling l, at long distances, was justified.展开更多
An analysis is made of the problem of sound radiation from infinite one-dimensional plateson elastic foundation, when the plates are subjected to the action of harmonic line forces movingat subsonic speeds (M 【 1). T...An analysis is made of the problem of sound radiation from infinite one-dimensional plateson elastic foundation, when the plates are subjected to the action of harmonic line forces movingat subsonic speeds (M 【 1). The expressions of nondimensional sound power are formulated andthe asymptotic forms of sound power in the low frequency regions are derived. The radiatedsound power is shown as a function of the stiffness of elastic foundation, in terms of stiffness fac-torψ, the moving speed of line force, in terms of Math number M, and the frequency, in termsof wavenumber ratio γ . The effects of the parameter ψ in conjunction with the parameters Mand γ on the radiated sound power level and the phenomenon of coincidence radiation are alsoinvestigated in detail.展开更多
To unify the four known fundamental forces and provide an explanation for the origin and the evolution of the universe are two long-term goals of theoretical physics. Here a “universe collapse model” has been propos...To unify the four known fundamental forces and provide an explanation for the origin and the evolution of the universe are two long-term goals of theoretical physics. Here a “universe collapse model” has been proposed. The universe consists of Matter and No-matter. No-matter is the universal energy that constructs a consistent universe field, presenting a spiral wave motion at the speed of light at the small scale. The partial collapse of the universal energy forms the particles of the universal energy in a variety of sizes, which are called as the elementary particles. These elementary particles form atom and matter, which construct the galaxies. The collapse of the universe field induces the formation of the universe collapse potential (UCP) and universe collapse force (UCF), and the later is represented by four different aspects of the fundamental forces at the large or small scales. The mathematical equation and the derivation of UCP and UCF are described, and possible experimental tests are also suggested. Therefore, this new model may give a novel explanation for the unification of four fundamental forces and the origin and the evolution of the universe.展开更多
A multi-antenna multiple relay (MAMR) network is considered and a variation of two-hop zero-forcing amplify-forward relaying method is proposed. Deploying ZF method together with application of diagonal power allocati...A multi-antenna multiple relay (MAMR) network is considered and a variation of two-hop zero-forcing amplify-forward relaying method is proposed. Deploying ZF method together with application of diagonal power allocation matrices at the relays, it is shown that the overall MAMR network is simplified to M independent single antenna multiple relay (SAMR) networks, where M is the number of source and destination antennas. This enables to incorporate network beamforming proposed for SAMR networks. Accordingly, using the BER as the performance metric, we present simulation results to show the proposed approach outperforms the common ZF method addressed in the literature.展开更多
Atmospheric aerosols have contributed to radiative forcing through direct and indirect mechanisms. Aerosol effects are important in computing radiative forcing estimates for the past, current and future climate. In th...Atmospheric aerosols have contributed to radiative forcing through direct and indirect mechanisms. Aerosol effects are important in computing radiative forcing estimates for the past, current and future climate. In this study, a comprehensive assessment of regional aerosol radiative forcing, Optical Properties of Aerosol and Clouds (OPAC) model (wavelength range of 0.25 - 4.0 μm) over selected sites in East Africa was done. Aerosol optical properties constituted the inputs of a Radiative Transfer Model (RTM). Op-tical properties investigated included Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP). Aerosol Radiative Forcing (ARF) during the study period at the surface (SFC), top of the atmosphere (TOA) and the atmosphere (ATM) was estimated to be -18.4 ± 1.4 W·m-2, +1.1 ± 0.3 W·m-2 and +19.5 ± 2.5 W·m-2, respectively. This corresponds to an increment in net atmospheric forcing at a heating rate of about 0.55 ± 0.05 K/day (0.41 ± 0.03 to 0.78 ± 0.03 K/day) in the lower troposphere. The study points out the significant role played by atmospheric aerosols in climate modification over the area of study. It is recommended that a further assessment be done in view of uncertainties that may impact on the findings and which were not within the scope of this research.展开更多
In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal di...In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal dimension of the global attractors of this problem is finite.展开更多
A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing grav...A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.展开更多
AIM: To analyze the virtual touch tissue quantification(VTTQ) and virtual touch imaging quantification(VTIQ) techniques, and identify possible factors that may influence VTTQ and VTIQ measurements.METHODS: One hundred...AIM: To analyze the virtual touch tissue quantification(VTTQ) and virtual touch imaging quantification(VTIQ) techniques, and identify possible factors that may influence VTTQ and VTIQ measurements.METHODS: One hundred and eighty-six(104 women/82 men) of 323 subjects met the inclusion criteria(age > 18 years, no history of chronic or gastrointestinal disease, body-mass index(BMI) < 30 kg/m2, a fasting period of at least three hours, no history of hepatotoxic pharmaceuticals, alcohol consumption < 24 g/d in men and < 12 g/d in women, and normal findings upon ultrasound examination of the abdomen). Measurements were taken at depths of 50 mm with VTTQ, 15 mm and 25 mm with VTIQ in the right hepatic lobe, and at 15 mm with only VTIQ in the left hepatic lobe. The examiner acquired six measurements per position, thereby giving 24 measurements in total.RESULTS: The 95% confidence intervals of mean were1.23-1.29 m/s for VTTQ and 1.29-1.37 m/s, 1.17-1.23 m/s, and 1.48-1.57 m/s for VTIQ in a depth of 15 mm and 25 mm in the right hepatic lobe and 15 mm in the left hepatic lobe. Only superficial measurements in the right hepatic lobe with the VTIQ method exhibited an effect of age on shear wave velocity. Measurements acquired using the 6C1 probe with the VTTQ method showed no dependence on BMI. By comparison, BMI influenced measurements taken with the VTIQ method using the 9L4 probe in the superficial and deep areas of the right hepatic lobe, as well as in the left hepatic lobe(P = 0.0160, P = 0.0019, P = 0.0173, respectively). Gender influenced measurements at depths of 50 mm with VTTQ and 25 mm with VTIQ in the right hepatic lobe(P = 0.0001, P = 0.0269). Significant differences were found between measurements with the 6C1(VTTQ) and 9L4 probes(VTIQ)(P = 0.0067), between superficial and deep measurements(P < 0.0001), and between the right and left lobes of the liver(P < 0.0001). CONCLUSION: Measurements in the right lobe and deep regions are preferable. Gender differences must be considered. BMI must be considered when assessing VTIQ technology.展开更多
Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two...Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two bodies A and B, at any distance in the free state each, will be reciprocally oriented parallel and in the same sense if the electrical interaction forces F between them are of decreasing type with distance r. If the electrical interaction forces F are of increasing type with distance, the two dipoles will be reciprocally oriented parallel but on the opposite sense. The AT principle stipulate that any two electrical dipoles P1A, P1B, at any distance in the free state each, will present always a reciprocal force of attraction FD in both cases of orientation accordingly to OR principle in case of any type of electrical force F decreasing or increasing with distance. These findings may complete our previous work where we found that FD force, between two electrical dipoles P1A, P1B considered at atomic and nuclear level, is in fact the actual gravitation Newton force FN. The paper must be considered together with this work for more consistency.展开更多
文摘The discovery by the author of real magnetic charges and true anti-electrons in the atomic structures allowed him to establish that the gravitational field (GF) in reality is the vortex electromagnetic field. Depending on the vector conditions the gravitational fields can be either paragravitational (PGF) or ferrogravitational (FGF). Masses (atoms, nucleons, etc.) emitting PGF manifest so-called attraction to each other. In fact, this process is the pressing of atoms or nucleons to each other by the forces of gravitational “Dark energy”. Namely the gravitational “Dark energy” which is formed between the masses emitting PGF and compressing of nucleons in atomic nuclei is the main force factor determining the formation of nuclear forces. Masses that emit FGF are repelled from PGF sources, for example, from the Earth. The last gravitational manifestation, discovered by the author, this is of the effect of the gravitational levitation. The atomic shell and atomic nucleus are autonomous sources of gravitational field in atomic compositions. The gravitational fields emitted these sources, by its physical parameters, are different gravitational fields, what associated with differences in the magnitudes charges of magnetic and electric particles in their compositions. The noted differences in the parameters of the GF are of reason that in atoms the process of extrusion of foreign gravitational field from the region of given gravitational source is realized. This effect should be called the effect of intra-atomic gravitational shielding (IAGS). Within the framework of this effect the shell of the atom is a kind of gravitational “insulator” that prevents the PGF of the nucleons from leaving beyond of the atom. As result of the IAGS effect, the concentration PGF of nucleons is realized only in the region of the nucleus, which leads to an increase in nuclear forces. However, the resistance of the marked “insulator” is finite and if the critical voltage PGF on the nucleus is exceeded, the complete shielding of the nucleon fields by the atomic shell is broken. As result of the leakage of a part of the PGF of nucleons beyond the atom, the density of this field in the region of the nucleus decreases significantly, which leads to a weakening of the nuclear forces and often leads to radioactivity. The effect of gravitational shielding is directly related to such a well-known concept as the mass defect of the nucleus. It is the exclusion of the gravitational field formed by the nucleons in the composition of the atomic nucleus as a result of the full IAGS effect that creates the illusion of atomic mass defect.
文摘Though not well-known, Einstein endeavored much of his life to general-relativize quantum mechanics, (rather than quantizing gravity). Albeit he did not succeed, his legacy lives on. In this paper, we begin with the general relativistic field equations describing flat spacetime, but stimulated by vacuum energy fluctuations. In our precursor paper, after straightforward general relativistic calculations, the resulting covariant and contravariant energy-momentum tensors were identified as n-valued operators describing graviton excitation. From these two operators, we were able to generate all three boson masses (including the Higgs mass) in precise agreement as reported in the 2010 CODATA (NIST);moreover local, as-well-as large-scale, accelerated spacetimes were shown to naturally occur from this general relativized quantum physics approach (RQP). In this paper, applying the same approach, we produce an n-valued Coulombs Force Law leading to the energy spectrum for atomic hydrogen, without assuming quantized atomic radii, velocity and momentum, as Bohr did.
基金funded by the National Natural Science Foundation of China (31501800 and 31572156)the National Natural Science Foundation of China Youth Fund (2015QRNC001)+1 种基金the Science and Technology Cooperation Foundations of Henan Province of China (172106000005)the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences
文摘Gibberellins(GAs)promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa),however,the mechanism of regulating flowering is not fully understood.In this study,exogenous GA3 was applied to five-year-old Luoyang Hong plants to explore responses in terms of endogenous hormones,flowering quality,and the hormone-and flowering-associated gene expression.Exogenous GA3 application significantly promoted flower bud development and new branch growth,as well as improved flowering quality.Exogenous GA3 application also stimulated the synthesis of endogenous GA3 and indole-3-acetic acid(IAA)but reduced abscisic acid(ABA)levels.To further elucidate the regulatory mechanism,eight genes for GA biosynthesis and signaling,including PsCPS,PsKS,PsGA3ox,PsGA2ox,PsGID1b,PsGID1c,PsDELLA,and PsGID2 were cloned for the first time,and sequence analysis was also performed.The results suggested that all the cloned genes have conserved structure as each homologous gene reported in the other species.Phylogenetic trees constructed by the each cloned gene showed that the phylogenetic evolutionary relationship of P.suffruticosa was closely related to Vitis vinifera.The expression patterns of the above genes,and genes for ABA and IAA biosynthetic and signaling,and the flowering time were also investigated.Most of the above genes showed higher expression in the control buds than those in the GA3 treated buds at six developmental stages,whereas the expression levels of PsSOC1 and PsSPL9 were up-regulated by GA3 treatment.The results also showed that the GA-biosynthetic and signaling pathways are conserved in tree peony,and the PsCPS,PsGA3ox,PsGA2ox,PsGID1,PsDELLA,and PsGID2 genes are necessary for feedback regulation of GAs.Furthermore,hormone changes promoted PsSOC1 and PsSPL9 expression,and repressed PsSVP expression,which contributed to the improvement flowering quality in tree peony of forcing culture.
文摘Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its buildup. Ventilation was not initially recognized as an essential factor to thermal dispersion. However, as electronic circuit-boards continued to heat up, circuit failure became a problem, forcing the inclusion of miniaturized high speed fans. Later, heat sinks with fins and quiet fans were incorporated in most manufactured circuits. Now heat sinks come in the form of a fan with fans made to function as fins to disperse heat. Heat sinks absorb and radiate excess heat from circuit-boards in order to prolong the circuit’s life span. The higher the thermal conductivity of the material used the more efficient and effective the heat sink is. This paper is an attempt to theoretically design a heat sink with a temperature gradient lower than that of the circuit board’s excess heat.
文摘An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day.
文摘In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis.
文摘End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.
文摘In this paper,we give all-sided pastic analysis of the rectangular slab with three edges simply-supported and other free.Here we discuss the following four cases:(1)The uniformly distributedload over the area a slab.(2).A concentrated load act at midpoint of free edges slab.(3)A concen-trated load act at the center a slab.(4)The line load act along free edge of slab.
基金funded by the National Natural Science Foundation of China (Grants 41675100, 91737306, and U1811464)
文摘Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model(FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing(CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere(TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2(1%) and 3 W m-2(3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region(AMR). The results indicate that FAMIL1.1 well reproduces the summer–winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed.
文摘We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external(nutrient inflows) and internal(spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic(phyto-and zooplankton) and monimolimnetic(purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth af fect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at diff erent depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions(higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra-and interannual climate and weather effects will be more important for the control of meromixis stability.
文摘In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electrical interactions between charged microparticles (MPs), which develop as fundamental vibrations (FVs) in ether, producing the vibrational strains εand γand the resulting stresses σand τ, as percussions of ether cells (ECs) upon the MP surface. The stresses σ?and?τproduce a resultant force FP, due to the percussions which constitute the real electric force FCC. The spatial effect of ether on FP is demonstrated by an analytical method, considering the electrical interaction between MPs through various equidistant spatial paths li of FVs, modelled on the basis of the Huygens principle for waves. For this issue, we utilized a numerical calculation, which could be generalized. But this spatial effect of the ether leads at a very slow decreasing of the FP forces ratio rF when doubling the distance l, in contrast to Coulomb’s FC forces whose ratio rF?decreases accentuate with doubling l. Accordingly, the necessity of including the term ln r in the FCC force, which is limited to 1.0 for doubling l, at long distances, was justified.
文摘An analysis is made of the problem of sound radiation from infinite one-dimensional plateson elastic foundation, when the plates are subjected to the action of harmonic line forces movingat subsonic speeds (M 【 1). The expressions of nondimensional sound power are formulated andthe asymptotic forms of sound power in the low frequency regions are derived. The radiatedsound power is shown as a function of the stiffness of elastic foundation, in terms of stiffness fac-torψ, the moving speed of line force, in terms of Math number M, and the frequency, in termsof wavenumber ratio γ . The effects of the parameter ψ in conjunction with the parameters Mand γ on the radiated sound power level and the phenomenon of coincidence radiation are alsoinvestigated in detail.
文摘To unify the four known fundamental forces and provide an explanation for the origin and the evolution of the universe are two long-term goals of theoretical physics. Here a “universe collapse model” has been proposed. The universe consists of Matter and No-matter. No-matter is the universal energy that constructs a consistent universe field, presenting a spiral wave motion at the speed of light at the small scale. The partial collapse of the universal energy forms the particles of the universal energy in a variety of sizes, which are called as the elementary particles. These elementary particles form atom and matter, which construct the galaxies. The collapse of the universe field induces the formation of the universe collapse potential (UCP) and universe collapse force (UCF), and the later is represented by four different aspects of the fundamental forces at the large or small scales. The mathematical equation and the derivation of UCP and UCF are described, and possible experimental tests are also suggested. Therefore, this new model may give a novel explanation for the unification of four fundamental forces and the origin and the evolution of the universe.
文摘A multi-antenna multiple relay (MAMR) network is considered and a variation of two-hop zero-forcing amplify-forward relaying method is proposed. Deploying ZF method together with application of diagonal power allocation matrices at the relays, it is shown that the overall MAMR network is simplified to M independent single antenna multiple relay (SAMR) networks, where M is the number of source and destination antennas. This enables to incorporate network beamforming proposed for SAMR networks. Accordingly, using the BER as the performance metric, we present simulation results to show the proposed approach outperforms the common ZF method addressed in the literature.
文摘Atmospheric aerosols have contributed to radiative forcing through direct and indirect mechanisms. Aerosol effects are important in computing radiative forcing estimates for the past, current and future climate. In this study, a comprehensive assessment of regional aerosol radiative forcing, Optical Properties of Aerosol and Clouds (OPAC) model (wavelength range of 0.25 - 4.0 μm) over selected sites in East Africa was done. Aerosol optical properties constituted the inputs of a Radiative Transfer Model (RTM). Op-tical properties investigated included Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP). Aerosol Radiative Forcing (ARF) during the study period at the surface (SFC), top of the atmosphere (TOA) and the atmosphere (ATM) was estimated to be -18.4 ± 1.4 W·m-2, +1.1 ± 0.3 W·m-2 and +19.5 ± 2.5 W·m-2, respectively. This corresponds to an increment in net atmospheric forcing at a heating rate of about 0.55 ± 0.05 K/day (0.41 ± 0.03 to 0.78 ± 0.03 K/day) in the lower troposphere. The study points out the significant role played by atmospheric aerosols in climate modification over the area of study. It is recommended that a further assessment be done in view of uncertainties that may impact on the findings and which were not within the scope of this research.
文摘In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal dimension of the global attractors of this problem is finite.
文摘A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.
文摘AIM: To analyze the virtual touch tissue quantification(VTTQ) and virtual touch imaging quantification(VTIQ) techniques, and identify possible factors that may influence VTTQ and VTIQ measurements.METHODS: One hundred and eighty-six(104 women/82 men) of 323 subjects met the inclusion criteria(age > 18 years, no history of chronic or gastrointestinal disease, body-mass index(BMI) < 30 kg/m2, a fasting period of at least three hours, no history of hepatotoxic pharmaceuticals, alcohol consumption < 24 g/d in men and < 12 g/d in women, and normal findings upon ultrasound examination of the abdomen). Measurements were taken at depths of 50 mm with VTTQ, 15 mm and 25 mm with VTIQ in the right hepatic lobe, and at 15 mm with only VTIQ in the left hepatic lobe. The examiner acquired six measurements per position, thereby giving 24 measurements in total.RESULTS: The 95% confidence intervals of mean were1.23-1.29 m/s for VTTQ and 1.29-1.37 m/s, 1.17-1.23 m/s, and 1.48-1.57 m/s for VTIQ in a depth of 15 mm and 25 mm in the right hepatic lobe and 15 mm in the left hepatic lobe. Only superficial measurements in the right hepatic lobe with the VTIQ method exhibited an effect of age on shear wave velocity. Measurements acquired using the 6C1 probe with the VTTQ method showed no dependence on BMI. By comparison, BMI influenced measurements taken with the VTIQ method using the 9L4 probe in the superficial and deep areas of the right hepatic lobe, as well as in the left hepatic lobe(P = 0.0160, P = 0.0019, P = 0.0173, respectively). Gender influenced measurements at depths of 50 mm with VTTQ and 25 mm with VTIQ in the right hepatic lobe(P = 0.0001, P = 0.0269). Significant differences were found between measurements with the 6C1(VTTQ) and 9L4 probes(VTIQ)(P = 0.0067), between superficial and deep measurements(P < 0.0001), and between the right and left lobes of the liver(P < 0.0001). CONCLUSION: Measurements in the right lobe and deep regions are preferable. Gender differences must be considered. BMI must be considered when assessing VTIQ technology.
文摘Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two bodies A and B, at any distance in the free state each, will be reciprocally oriented parallel and in the same sense if the electrical interaction forces F between them are of decreasing type with distance r. If the electrical interaction forces F are of increasing type with distance, the two dipoles will be reciprocally oriented parallel but on the opposite sense. The AT principle stipulate that any two electrical dipoles P1A, P1B, at any distance in the free state each, will present always a reciprocal force of attraction FD in both cases of orientation accordingly to OR principle in case of any type of electrical force F decreasing or increasing with distance. These findings may complete our previous work where we found that FD force, between two electrical dipoles P1A, P1B considered at atomic and nuclear level, is in fact the actual gravitation Newton force FN. The paper must be considered together with this work for more consistency.