The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 ...The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 + 2CO←→CH4 + CO2), combining CO methanation with water-gas-shift reaction, can significantly decrease the H2/CO molar ratio to 1 for SNG production. A detailed thermodynamic analysis of RDR reaction was carried out based on the Gibbs free energy minimization method. The effect of temperature, pressure. H2/CO ratio and the addition of H2O, CH4, CO2, O2 and C2H4 into the feed gas on CO conversion, CH4 and CO2 selectivity, as well as CH4 and carbon yield, are discussed. Experimental results obtained on homemade impregnated Ni/Al2O3 catalyst are compared with the calculations. The results demonstrate that low temperature (200-500 °C), high pressure (1-5 MPa) and high H2/CO ratio (at least 1) promote CO conversion and CH4 selectivity and decrease carbon yield. Steam and CO2 in the feed gas decrease the CH4 selectivity and carb on yield, and enhance the CO2 con tent. Extra CH4 elevates the CH4 content in the products, but leads to more carbon formation at high temperatures. O2 significantly decreases the CH4 selectivity and C2H4 results in the generation of carbon.展开更多
A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the im...A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the immerged Long-big tunnel in Jinping Cascade II Hydropower Station under uniaxial compression was recorded by using the testing scheme. According to the stereology theory, the propagation and coalescent of cracks at meso-scale were quantitatively investigated with digital technology. Therefore, the basic geometric information of rock microcracks such as area, angle, length, width, perimeter, was obtained from binary images after segmentation. The failure mechanism of specimen under uniaxial compression with the quantitative information was studied from macro and microscopic point of view. The results show that the image of microfracturing process of the specimen can be observed and recorded digitally. During the damage of the specimen, the distribution of microcracks in the specimen is still subjected to exponential distribution with some microcracks concentrated in certain regions. Finally, the change law of the fractal dimension of the local element in marble sample under different external load conditions is obtained by means of the statistical calculation of the fractal dimension.展开更多
31 cases of atherosclerosis (AS) were treated with Jiang Zhi Tong Mai Fang ([symbol: see text], formula of JZTMF), and its effect was compared with 30 cases treated with lovastatin in the control group. Clinically, th...31 cases of atherosclerosis (AS) were treated with Jiang Zhi Tong Mai Fang ([symbol: see text], formula of JZTMF), and its effect was compared with 30 cases treated with lovastatin in the control group. Clinically, the JZTMF formula showed an effect of regulating blood lipids, and therefore it was antiatherosclerotic. The mechanism is, probably, restoration of the function of endothelial cells (EC) by increasing the synthesis of 6-keto-PGF1 alpha and decreasing the release of endothelin (ET) as evidenced in the experimental study.展开更多
Two quinary high-entropy alloys (HEAs) with equiatomic concentrations formed by doping either Cu or A1 elements into the quaternary NiFeCoCr alloy are produced by arc melting and spray casting techniques. Their entr...Two quinary high-entropy alloys (HEAs) with equiatomic concentrations formed by doping either Cu or A1 elements into the quaternary NiFeCoCr alloy are produced by arc melting and spray casting techniques. Their entropy of fusion, thermal expansion coefficient and thermal diffusivity are experimentally investigated with differential scanning cMorimetry, dilatometry and laser flash methods. The NiFeCoCrCu HEAs contain a face- centered cubic high-entropy phase plus a minor interdendritic (Cu) phase and display a lower entropy of fasion and the Vickers hardness. The NiFeCoCrAl HEAs consist of two body-centered cubie high-entropy phases with coarse dendritic structures and show higher entropy of fusion and the Vickers hardness. Both the thermal expansion coefficient and the thermal diffusivity of the former Cu-doped alloy are signitieantly larger than those of the latter At-doped M1oy. Although the temperature dependence of thermal diffusivity is similar for both HEAs, it is peculiar that the thermal expansion curve of the NiFeCoCrAl alloy exhibits an inflexion at temperatures of 860-912 K.展开更多
The effect of high dose dexamethasone(5 mg/kg wt,intravenous injection)to preventand treat secondary pathological damage due to craniocerebral injury was studied in an animal modelof craniocerebral injury caused by hi...The effect of high dose dexamethasone(5 mg/kg wt,intravenous injection)to preventand treat secondary pathological damage due to craniocerebral injury was studied in an animal modelof craniocerebral injury caused by high-velocity missiles in dogs.We observed the physiologicalchanges,analyzed the level of serum and cerebrospinal fluid lactate dehydrogenase,cstimated thepermeability of blood brain barrier(BBB)and studied brain pathology by light and electronmicroscopy.The rusults suggest that high dose dexarnethasone can help to restore the structure andfunction of BBB,protect the brain cells,lessen the secondary pathological damage in the respiratoryand circulatory systams,and reduce the production of lipoperoxides(LPO).展开更多
The experimental models of craniocercbral wounds caused by 7. 62 mm bullets, i. e. thepenetrating craniocerebral injury, the tangential brain injury and the tangential skull injury, were es-tablished in dogs. The cran...The experimental models of craniocercbral wounds caused by 7. 62 mm bullets, i. e. thepenetrating craniocerebral injury, the tangential brain injury and the tangential skull injury, were es-tablished in dogs. The craniocerebral ballistics, craniocerebral pathology, serum and cerebrospinal flu-id total lactate dehydrogenase, blood-brain barrier permcabalities, and the pathophysiology ofcardiovascular and respiratory systems were studied. These results suggest that: 1. These injuries ofhigh-velocity missile can all cause general brain damage and intracranio-hematomas ; 2. The severityof the wound depends on the site of the injury, the kinetic energy of the missile force and the effectof the temporary cavity ; 3. The brain injury can seriously damage the blood brain barrier, leadingto brain edema ; 4. The dysfunction of respiratory and cardiovascular system is the fatal complicationendangering the life of the subjects ; 5. Estimating serum and cerebrospinal fluid total lactatedehydrogenase is a simple and valuable way to judge the severity and prognosis of this injury.展开更多
Objective: It was to evaluate the effect of diabetes education on emotional distress in type 2 diabetes patients treated with oral medications. Methods: The experimental study took place in Albania and overall, 200 ty...Objective: It was to evaluate the effect of diabetes education on emotional distress in type 2 diabetes patients treated with oral medications. Methods: The experimental study took place in Albania and overall, 200 type 2 diabetes patients were enrolled (in both groups, intervention, and control) treated with oral medications, having levels of Glycated hemoglobin HbA1c > 6.5% as well the absence of associated diseases such as dementia and psychiatric disorders. Patients were randomly selected from the medical registry of family physicians in the Tirana region. Patients were screened for the emotional distress before and after the intervention with the self-administered questionnaire Problem Areas in Diabetes PAID 5. In addition, the levels of HbA1c in % were evaluated before and after intervention in both groups. Only intervention group underwent four diabetes education sessions offered by trained nursing staff while the control group continued the previous regime. The questionnaire reliability analysis was estimated by the Cronbach alpha coefficient. To compare the groups the t-test was used and the value of p Results: Mean age of patients in intervention and control group was respectively 54.03 ±9.57 and 55.82 ± 7.86. Before and after health education PAID 5 scores for the intervention group were respectively 11.3 vs. 8.75 while for the control group 11.9 vs. 11.35, p = 0.018. Levels of HbA1c% before and after education for the intervention group were 7.02 vs. 6.2 while for the control group 6.9 vs. 6.8, p = 0.001. Positive and significant correlation (r = 0.321, p = 0.001) was between level of emotional distress and the age of the patients. Conclusions: The study found that besides better control of diabetes, additional education of diabetic patients seemed to significantly improve the level of emotional distress due to diabetes in diabetic patients.展开更多
China has entered the area of new normal economy which requires the harmonious development of energy consumption,environmental protection and economic development.Natural gas hydrate is a potential clean energy with t...China has entered the area of new normal economy which requires the harmonious development of energy consumption,environmental protection and economic development.Natural gas hydrate is a potential clean energy with tremendous reserve in China.The successful field test of marine hydrate exploitation in South China Sea created a new record of the longest continuous gas production from natural gas hydrate.However,the corresponding fundamental research is still urgently needed in order to narrow the gap between field test and commercial production.This paper reviewed the latest advances of experimental study on gas production from hydrate reservoir in China.The experimental apparatus for investigating the performance of hydrate dissociation in China has developed from one dimensional to two dimensional and three dimensional.In addition,well configuration developed from one tube to complicated multi-well networks to satisfy the demand of different production models.Besides,diverse testing methods have been established.The reviewed papers preliminary discussed the mechanical properties and the sediment deformation situation during the process of hydrate dissociation.However,most reported articles only consider the physical factor,the coupled mechanism of physical and chemical factor for the mechanical properties of the sediment and the sand production problem should be studied further.展开更多
By measuring the contents of lipid-bound sialic acid (LSA), malonyldialdehyde (MDA), activities of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD) of the myocardial cells, it has been shown that Sheng M...By measuring the contents of lipid-bound sialic acid (LSA), malonyldialdehyde (MDA), activities of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD) of the myocardial cells, it has been shown that Sheng Mai San can protect the myocardial cells from the adriamycin-induced cardiotoxicity ultrastructrally, inhibit their metabolism of lipid-bound sialic acid and improve the scavenging ability of myocardial cells for semiquinoid free radicals.展开更多
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm...Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.展开更多
Vegetative filter strip (VFS) is a main kind of Best Management Practices for the control of non-point source pollution. The goal of this paper is to evaluate the effectiveness of VFS in Chinese northwest regions. Thr...Vegetative filter strip (VFS) is a main kind of Best Management Practices for the control of non-point source pollution. The goal of this paper is to evaluate the effectiveness of VFS in Chinese northwest regions. Three VFSs with natural grass and Hippophae rhamnoides/grass patterns have been constructed in the bank slope of Xiaohuashan reservoir, Huaxian County, Shannxi Province. The removal effects of VFS and influencing factors have been analyzed based on field experiment data. The result reveals a positive effect on reducing the transportation of suspended solids, phosphorus and nitrogen in surface runoff, and it is more efficient on suspended solids removal. The experiment also shows that most of the suspended particles and pollutants bound to them were entrapped in the first 10 m of VFS. The main factors influencing effectiveness of VFS include vegetation patterns and inflow rate. In addition, inflow pollutant concentration has a larger impact on reducing total nitrogen and total phosphorus by VFS, but the reduction effect on SS has no significant difference.展开更多
Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid a...Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid area,natural draft dry cooling tower is a promising choice.To develop the experimental studies on small cooling tower,a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence.The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 ℃ to 32 ℃.The cooling tower numerical model was refined and validated with the experimental data.The model of 1 MW concentrating solar thermal supercritical CO2 power cycle was developed and integrated with the cooling tower model.The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated.The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO2 Brayton cycle were analysed and discussed.展开更多
Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mou...Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing...Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.展开更多
INTRODUCTIONThe main component of a traditional Chinese drug 'Pishuang'. arsenic trioxide (As2O3), has obviously selective anti-tumor effect on human hepatocellular carcinoma (HCC)in both in vitro and in vivo ...INTRODUCTIONThe main component of a traditional Chinese drug 'Pishuang'. arsenic trioxide (As2O3), has obviously selective anti-tumor effect on human hepatocellular carcinoma (HCC)in both in vitro and in vivo studies[1-5]. Due to limited effectiveness when any anti-carcinogen is used alone and obviously increased toxicity when the dose is raised, there is no exception for As2O3. Furthermore, combined chemotherapy contributes to improve therapeutic effectiveness, disperse toxicity and surmount drug-resistance,in which the combination of traditional Chinese and modern medicine has more advantages and characteristics. As a result,we made an experimental study on anti-tumor effect of As2O3in combination with cisplantin (PDD) or doxorubicin (ADM)on HCC. to investigate the possibility of AS2O3 in combination with PDD or ADM and nature of interaction between them,and to provide experimental basis for clinical application.展开更多
The barotropic primitive equations model is used in a numerical study of a tropical cyclone crossing the Subtropical high. It is revealed that apart from its own characteristics, sensitive factors having immediate eff...The barotropic primitive equations model is used in a numerical study of a tropical cyclone crossing the Subtropical high. It is revealed that apart from its own characteristics, sensitive factors having immediate effects on the motion of the tropical cyclone also include its radial distance from the center of the subtropical high, the variation in latitudinal location and intensity. A complex mechanism for nonlinear interactions among the tropical,subtropical high and β effect is also shown in the experiment, and expected to serve for the diagnosis and prediction of abnormal motion.展开更多
Through separation of the hexane-heptane–octane system in a cross-wall adiabatic dividing wall column, the effects of feed position, side-draw position, liquid split ratio, vapor split ratio and their interactions on...Through separation of the hexane-heptane–octane system in a cross-wall adiabatic dividing wall column, the effects of feed position, side-draw position, liquid split ratio, vapor split ratio and their interactions on the energy consumption were analyzed by Aspen Plus under the constant product purity, and the response surface model for the energy consumption was regressed. Based on the restriction on the optimal operating zone, the comparison of different combinations of surrogate models and optimization methods showed that, the combination of the Kriging model and multi-island genetic algorithm(Kriging-MIGA) had better prediction ability than the combination of the response surface model and partial derivative method(RSM-PD), and RSM-PD had better optimization effect than Kriging-MIGA. With a self-made cross-wall adiabatic dividing wall column, the temperature at measuring points and the energy consumption were measured during experiments, the comparison between measured values and simulated ones demonstrated that the optimized values of variables searched by RSM-PD and Kriging-MIGA could be both used as the optimum technological conditions since the experimental reliability was ensured, with the optimum technological conditions shown below: The feed position is 6, the side-draw position is 7, the combinations of liquid split ratio and vapor split ratio are [0.14, 0.5] and [0.16, 0.52], respectively. RSM-PD and Kriging-MIGA can provide the appropriate optimization methods for the dividing wall column.展开更多
文摘The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 + 2CO←→CH4 + CO2), combining CO methanation with water-gas-shift reaction, can significantly decrease the H2/CO molar ratio to 1 for SNG production. A detailed thermodynamic analysis of RDR reaction was carried out based on the Gibbs free energy minimization method. The effect of temperature, pressure. H2/CO ratio and the addition of H2O, CH4, CO2, O2 and C2H4 into the feed gas on CO conversion, CH4 and CO2 selectivity, as well as CH4 and carbon yield, are discussed. Experimental results obtained on homemade impregnated Ni/Al2O3 catalyst are compared with the calculations. The results demonstrate that low temperature (200-500 °C), high pressure (1-5 MPa) and high H2/CO ratio (at least 1) promote CO conversion and CH4 selectivity and decrease carbon yield. Steam and CO2 in the feed gas decrease the CH4 selectivity and carb on yield, and enhance the CO2 con tent. Extra CH4 elevates the CH4 content in the products, but leads to more carbon formation at high temperatures. O2 significantly decreases the CH4 selectivity and C2H4 results in the generation of carbon.
基金Projects(50674040, 50539090) supported by the National Natural Science Foundation of ChinaProject(CX07B_128z) supported by the Cultivate Creative Postgraduate Foundation of Jiangsu Province, China
文摘A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the immerged Long-big tunnel in Jinping Cascade II Hydropower Station under uniaxial compression was recorded by using the testing scheme. According to the stereology theory, the propagation and coalescent of cracks at meso-scale were quantitatively investigated with digital technology. Therefore, the basic geometric information of rock microcracks such as area, angle, length, width, perimeter, was obtained from binary images after segmentation. The failure mechanism of specimen under uniaxial compression with the quantitative information was studied from macro and microscopic point of view. The results show that the image of microfracturing process of the specimen can be observed and recorded digitally. During the damage of the specimen, the distribution of microcracks in the specimen is still subjected to exponential distribution with some microcracks concentrated in certain regions. Finally, the change law of the fractal dimension of the local element in marble sample under different external load conditions is obtained by means of the statistical calculation of the fractal dimension.
文摘31 cases of atherosclerosis (AS) were treated with Jiang Zhi Tong Mai Fang ([symbol: see text], formula of JZTMF), and its effect was compared with 30 cases treated with lovastatin in the control group. Clinically, the JZTMF formula showed an effect of regulating blood lipids, and therefore it was antiatherosclerotic. The mechanism is, probably, restoration of the function of endothelial cells (EC) by increasing the synthesis of 6-keto-PGF1 alpha and decreasing the release of endothelin (ET) as evidenced in the experimental study.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51571163,51371150,51271150 and 51327901
文摘Two quinary high-entropy alloys (HEAs) with equiatomic concentrations formed by doping either Cu or A1 elements into the quaternary NiFeCoCr alloy are produced by arc melting and spray casting techniques. Their entropy of fusion, thermal expansion coefficient and thermal diffusivity are experimentally investigated with differential scanning cMorimetry, dilatometry and laser flash methods. The NiFeCoCrCu HEAs contain a face- centered cubic high-entropy phase plus a minor interdendritic (Cu) phase and display a lower entropy of fasion and the Vickers hardness. The NiFeCoCrAl HEAs consist of two body-centered cubie high-entropy phases with coarse dendritic structures and show higher entropy of fusion and the Vickers hardness. Both the thermal expansion coefficient and the thermal diffusivity of the former Cu-doped alloy are signitieantly larger than those of the latter At-doped M1oy. Although the temperature dependence of thermal diffusivity is similar for both HEAs, it is peculiar that the thermal expansion curve of the NiFeCoCrAl alloy exhibits an inflexion at temperatures of 860-912 K.
基金Supported by the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of ZhejiangProvince (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘The effect of high dose dexamethasone(5 mg/kg wt,intravenous injection)to preventand treat secondary pathological damage due to craniocerebral injury was studied in an animal modelof craniocerebral injury caused by high-velocity missiles in dogs.We observed the physiologicalchanges,analyzed the level of serum and cerebrospinal fluid lactate dehydrogenase,cstimated thepermeability of blood brain barrier(BBB)and studied brain pathology by light and electronmicroscopy.The rusults suggest that high dose dexarnethasone can help to restore the structure andfunction of BBB,protect the brain cells,lessen the secondary pathological damage in the respiratoryand circulatory systams,and reduce the production of lipoperoxides(LPO).
文摘The experimental models of craniocercbral wounds caused by 7. 62 mm bullets, i. e. thepenetrating craniocerebral injury, the tangential brain injury and the tangential skull injury, were es-tablished in dogs. The craniocerebral ballistics, craniocerebral pathology, serum and cerebrospinal flu-id total lactate dehydrogenase, blood-brain barrier permcabalities, and the pathophysiology ofcardiovascular and respiratory systems were studied. These results suggest that: 1. These injuries ofhigh-velocity missile can all cause general brain damage and intracranio-hematomas ; 2. The severityof the wound depends on the site of the injury, the kinetic energy of the missile force and the effectof the temporary cavity ; 3. The brain injury can seriously damage the blood brain barrier, leadingto brain edema ; 4. The dysfunction of respiratory and cardiovascular system is the fatal complicationendangering the life of the subjects ; 5. Estimating serum and cerebrospinal fluid total lactatedehydrogenase is a simple and valuable way to judge the severity and prognosis of this injury.
文摘Objective: It was to evaluate the effect of diabetes education on emotional distress in type 2 diabetes patients treated with oral medications. Methods: The experimental study took place in Albania and overall, 200 type 2 diabetes patients were enrolled (in both groups, intervention, and control) treated with oral medications, having levels of Glycated hemoglobin HbA1c > 6.5% as well the absence of associated diseases such as dementia and psychiatric disorders. Patients were randomly selected from the medical registry of family physicians in the Tirana region. Patients were screened for the emotional distress before and after the intervention with the self-administered questionnaire Problem Areas in Diabetes PAID 5. In addition, the levels of HbA1c in % were evaluated before and after intervention in both groups. Only intervention group underwent four diabetes education sessions offered by trained nursing staff while the control group continued the previous regime. The questionnaire reliability analysis was estimated by the Cronbach alpha coefficient. To compare the groups the t-test was used and the value of p Results: Mean age of patients in intervention and control group was respectively 54.03 ±9.57 and 55.82 ± 7.86. Before and after health education PAID 5 scores for the intervention group were respectively 11.3 vs. 8.75 while for the control group 11.9 vs. 11.35, p = 0.018. Levels of HbA1c% before and after education for the intervention group were 7.02 vs. 6.2 while for the control group 6.9 vs. 6.8, p = 0.001. Positive and significant correlation (r = 0.321, p = 0.001) was between level of emotional distress and the age of the patients. Conclusions: The study found that besides better control of diabetes, additional education of diabetic patients seemed to significantly improve the level of emotional distress due to diabetes in diabetic patients.
基金Supported by Key Program of National Natural Science Foundation of China(51736009)National Natural Science Foundation of China(51806251 and 51676190)+5 种基金Youth Innovation Promotion Association,CAS(2019338)Pearl River S and T Nova Program of Guangzhou(201610010164)International S&T Cooperation Programme of China(2015DFA61790)Science and Technology Apparatus Development Program of the Chinese Academy of Sciences(YZ201619)Frontier Sciences Key Research Program of the Chinese Academy of Sciences(QYZDJ-SSW-JSC033)National Key Research and Development Program of China(2016YFC0304002,2017YFC0307306)
文摘China has entered the area of new normal economy which requires the harmonious development of energy consumption,environmental protection and economic development.Natural gas hydrate is a potential clean energy with tremendous reserve in China.The successful field test of marine hydrate exploitation in South China Sea created a new record of the longest continuous gas production from natural gas hydrate.However,the corresponding fundamental research is still urgently needed in order to narrow the gap between field test and commercial production.This paper reviewed the latest advances of experimental study on gas production from hydrate reservoir in China.The experimental apparatus for investigating the performance of hydrate dissociation in China has developed from one dimensional to two dimensional and three dimensional.In addition,well configuration developed from one tube to complicated multi-well networks to satisfy the demand of different production models.Besides,diverse testing methods have been established.The reviewed papers preliminary discussed the mechanical properties and the sediment deformation situation during the process of hydrate dissociation.However,most reported articles only consider the physical factor,the coupled mechanism of physical and chemical factor for the mechanical properties of the sediment and the sand production problem should be studied further.
文摘By measuring the contents of lipid-bound sialic acid (LSA), malonyldialdehyde (MDA), activities of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD) of the myocardial cells, it has been shown that Sheng Mai San can protect the myocardial cells from the adriamycin-induced cardiotoxicity ultrastructrally, inhibit their metabolism of lipid-bound sialic acid and improve the scavenging ability of myocardial cells for semiquinoid free radicals.
基金supported by the National Key R&D Program of China(2021YFB3301100)Beijing University of Chemical Technology Interdisciplinary Program(XK2023-07).
文摘Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.
文摘Vegetative filter strip (VFS) is a main kind of Best Management Practices for the control of non-point source pollution. The goal of this paper is to evaluate the effectiveness of VFS in Chinese northwest regions. Three VFSs with natural grass and Hippophae rhamnoides/grass patterns have been constructed in the bank slope of Xiaohuashan reservoir, Huaxian County, Shannxi Province. The removal effects of VFS and influencing factors have been analyzed based on field experiment data. The result reveals a positive effect on reducing the transportation of suspended solids, phosphorus and nitrogen in surface runoff, and it is more efficient on suspended solids removal. The experiment also shows that most of the suspended particles and pollutants bound to them were entrapped in the first 10 m of VFS. The main factors influencing effectiveness of VFS include vegetation patterns and inflow rate. In addition, inflow pollutant concentration has a larger impact on reducing total nitrogen and total phosphorus by VFS, but the reduction effect on SS has no significant difference.
文摘Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid area,natural draft dry cooling tower is a promising choice.To develop the experimental studies on small cooling tower,a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence.The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 ℃ to 32 ℃.The cooling tower numerical model was refined and validated with the experimental data.The model of 1 MW concentrating solar thermal supercritical CO2 power cycle was developed and integrated with the cooling tower model.The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated.The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO2 Brayton cycle were analysed and discussed.
基金supported by the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(Grant No.CKWV2017499/KY)the National Natural Science Foundation of China(Grant No.51779280)
文摘Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFF0600208)National Natural Science Foundation of China (Grant No.52005170)Hunan Provincial Science and Technology Innovation Program of China (Grant No.2020RC4018)。
文摘Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.
基金Supported by the Youth Science Grant of Jiangshu Province,No.BQ98048.
文摘INTRODUCTIONThe main component of a traditional Chinese drug 'Pishuang'. arsenic trioxide (As2O3), has obviously selective anti-tumor effect on human hepatocellular carcinoma (HCC)in both in vitro and in vivo studies[1-5]. Due to limited effectiveness when any anti-carcinogen is used alone and obviously increased toxicity when the dose is raised, there is no exception for As2O3. Furthermore, combined chemotherapy contributes to improve therapeutic effectiveness, disperse toxicity and surmount drug-resistance,in which the combination of traditional Chinese and modern medicine has more advantages and characteristics. As a result,we made an experimental study on anti-tumor effect of As2O3in combination with cisplantin (PDD) or doxorubicin (ADM)on HCC. to investigate the possibility of AS2O3 in combination with PDD or ADM and nature of interaction between them,and to provide experimental basis for clinical application.
文摘The barotropic primitive equations model is used in a numerical study of a tropical cyclone crossing the Subtropical high. It is revealed that apart from its own characteristics, sensitive factors having immediate effects on the motion of the tropical cyclone also include its radial distance from the center of the subtropical high, the variation in latitudinal location and intensity. A complex mechanism for nonlinear interactions among the tropical,subtropical high and β effect is also shown in the experiment, and expected to serve for the diagnosis and prediction of abnormal motion.
基金the financial support by the National Natural Science Foundation of China (21306036)
文摘Through separation of the hexane-heptane–octane system in a cross-wall adiabatic dividing wall column, the effects of feed position, side-draw position, liquid split ratio, vapor split ratio and their interactions on the energy consumption were analyzed by Aspen Plus under the constant product purity, and the response surface model for the energy consumption was regressed. Based on the restriction on the optimal operating zone, the comparison of different combinations of surrogate models and optimization methods showed that, the combination of the Kriging model and multi-island genetic algorithm(Kriging-MIGA) had better prediction ability than the combination of the response surface model and partial derivative method(RSM-PD), and RSM-PD had better optimization effect than Kriging-MIGA. With a self-made cross-wall adiabatic dividing wall column, the temperature at measuring points and the energy consumption were measured during experiments, the comparison between measured values and simulated ones demonstrated that the optimized values of variables searched by RSM-PD and Kriging-MIGA could be both used as the optimum technological conditions since the experimental reliability was ensured, with the optimum technological conditions shown below: The feed position is 6, the side-draw position is 7, the combinations of liquid split ratio and vapor split ratio are [0.14, 0.5] and [0.16, 0.52], respectively. RSM-PD and Kriging-MIGA can provide the appropriate optimization methods for the dividing wall column.