This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the ...This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU...Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun...The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? The present manuscript introduces a Rotational Fission model of creation and evolution of Macrostructures of the World (Superclusters, Galaxies, Extrasolar Systems), based on Overspinning Cores of the World’s Macroobjects, and the Law of Conservation of Angular Momentum. The Hypersphere World-Universe model is the only cosmological model in existence that is consistent with this Fundamental Law.展开更多
Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation...Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.展开更多
The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM)...The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.展开更多
A survey on agents, causality and intelligence is presented and an equilibrium-based computing paradigm of quantum agents and quantum intelligence (QAQI) is proposed. In the survey, Aristotle’s causality principle an...A survey on agents, causality and intelligence is presented and an equilibrium-based computing paradigm of quantum agents and quantum intelligence (QAQI) is proposed. In the survey, Aristotle’s causality principle and its historical extensions by David Hume, Bertrand Russell, Lotfi Zadeh, Donald Rubin, Judea Pearl, Niels Bohr, Albert Einstein, David Bohm, and the causal set initiative are reviewed;bipolar dynamic logic (BDL) is introduced as a causal logic for bipolar inductive and deductive reasoning;bipolar quantum linear algebra (BQLA) is introdused as a causal algebra for quantum agent interaction and formation. Despite the widely held view that causality is undefinable with regularity, it is shown that equilibrium-based bipolar causality is logically definable using BDL and BQLA for causal inference in physical, social, biological, mental, and philosophical terms. This finding leads to the paradigm of QAQI where agents are modeled as quantum enssembles;intelligence is revealed as quantum intelligence. It is shown that the enssemble formation, mutation and interaction of agents can be described as direct or indirect results of quantum causality. Some fundamental laws of causation are presented for quantum agent entanglement and quantum intelligence. Applicability is illustrated;major challenges are identified in equilibriumbased causal inference and quantum data mining.展开更多
文摘This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? The present manuscript introduces a Rotational Fission model of creation and evolution of Macrostructures of the World (Superclusters, Galaxies, Extrasolar Systems), based on Overspinning Cores of the World’s Macroobjects, and the Law of Conservation of Angular Momentum. The Hypersphere World-Universe model is the only cosmological model in existence that is consistent with this Fundamental Law.
文摘Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.
文摘The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.
文摘A survey on agents, causality and intelligence is presented and an equilibrium-based computing paradigm of quantum agents and quantum intelligence (QAQI) is proposed. In the survey, Aristotle’s causality principle and its historical extensions by David Hume, Bertrand Russell, Lotfi Zadeh, Donald Rubin, Judea Pearl, Niels Bohr, Albert Einstein, David Bohm, and the causal set initiative are reviewed;bipolar dynamic logic (BDL) is introduced as a causal logic for bipolar inductive and deductive reasoning;bipolar quantum linear algebra (BQLA) is introdused as a causal algebra for quantum agent interaction and formation. Despite the widely held view that causality is undefinable with regularity, it is shown that equilibrium-based bipolar causality is logically definable using BDL and BQLA for causal inference in physical, social, biological, mental, and philosophical terms. This finding leads to the paradigm of QAQI where agents are modeled as quantum enssembles;intelligence is revealed as quantum intelligence. It is shown that the enssemble formation, mutation and interaction of agents can be described as direct or indirect results of quantum causality. Some fundamental laws of causation are presented for quantum agent entanglement and quantum intelligence. Applicability is illustrated;major challenges are identified in equilibriumbased causal inference and quantum data mining.