Orthogonal frequency division multiplexing (OFDM) is vastly used in wireless networks. Its superiority relies on the fact that information can be split in large amount of frequencies. Each frequency is called informat...Orthogonal frequency division multiplexing (OFDM) is vastly used in wireless networks. Its superiority relies on the fact that information can be split in large amount of frequencies. Each frequency is called information subcarrier. OFDM exhibits excellent annotation in channel fades and interferers as only a few subcarriers can be affected and consequently a small part of the original data stream can be lost. Orthogonality between frequencies ensures better spectrum management and obviates the danger of intersymbol interference. However, an essential problem exists. OFDM systems have high peak to average power ratio. This implies large fluctuations in signal power, ending up in increasing complexity of ADCs and DACs. Also, power amplifiers must work in a larger linear dynamic region. In this paper we present two new techniques for reducing Peak to Average Power Ratio (PAPR), that can be added in any OFDM system and we compare them with other existing schemes.展开更多
An accurate frequency synchronization method using the zadoff-chu (ZC) constant envelop preamble is analyzed, and a new preamble weighted by pseudo-noise sequence is used for orthogonal frequency division multiplexing...An accurate frequency synchronization method using the zadoff-chu (ZC) constant envelop preamble is analyzed, and a new preamble weighted by pseudo-noise sequence is used for orthogonal frequency division multiplexing (OFDM) systems. Using this method, frequency offset estimator range is greatly enlarged with no loss in accuracy. The range of the frequency estimation is ±30 of subcarrier spacing using ZC sequence as preamble. Simulations in the MATLAB for an AWGN channel show that the proposed method achieves superior performance to existing techniques in terms of frequency accuracy and range.展开更多
LTE (Long Term Evolution) is the latest technology in wireless communication. It is being used because of its peak data rate and spectral efficiency. LTE uses OFDMA (Orthogonal Frequency Division Multiple Access) tech...LTE (Long Term Evolution) is the latest technology in wireless communication. It is being used because of its peak data rate and spectral efficiency. LTE uses OFDMA (Orthogonal Frequency Division Multiple Access) technology for radio transmission and reception in downlink. OFDM is a multicarrier modulation and multiplexing technique to improve data rate, spectral efficiency and minimize the problem of fading and ISI (Inter Symbol Interference). Many transceivers design have been designed for OFDM system to minimize error and maximize throughput of the information being transmitted and received at the system. The purpose of this article is to present a survey of the published literature which deals with various OFDM transceiver design, focusing on the merits and demerits of the corresponding OFDM transceiver design.展开更多
In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes exten...In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.展开更多
The high peak-to-average power ratio (PAPR) is one of the serious problems in the application of OFDM technology. In this paper, an improved partial transmit sequence (PTS) scheme based on combining the grouped discre...The high peak-to-average power ratio (PAPR) is one of the serious problems in the application of OFDM technology. In this paper, an improved partial transmit sequence (PTS) scheme based on combining the grouped discrete cosine transform (DCT) with PTS technique is proposed. In the proposed scheme, the adjacent partitioned data are firstly transformed by a DCT into new modified data. After that the proposed scheme utilizes the conventional PTS technique to further reduce the PAPR of the OFDM signal. The performance of the PAPR is evaluated using a computer simulation. The simulation results indicate that the proposed scheme may improve the PAPR performance compared with the conventional PTS scheme, the grouped DCT scheme, and original OFDM respectively.展开更多
A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize fram...A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize frame synchronization,compensate the carrier frequency offset(CFO),and estimate and equalize channel simultaneously.Since there is no pilot signals or training symbols in TDS-OFDM,the proposed scheme can achieve higher spectral efficiency(SE)above 10%improvement comparing with CPOFDM.The proposed method is implemented and verified in a 28GBaud QPSK OFDM system and a 28GBaud 16QAM OFDM system.It is demonstrated that the proposed scheme shows high CFO estimation accuracy and synchronous accuracy.Under CFO and linewidth of laser source set as 100MHz and 100kHz respectively,BER of QPSK OFDM system is below 3.8e-3 at the optical signal-to-noise ratio(OSNR)of 13dB,and BER of 16QAM OFDM system is below 3.8e-3 at the OSNR of 20dB.展开更多
Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, i...Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, its remarkable drawback is the high computational complexity. In order to reduce the computational complexity, currently many PTS methods have been proposed but with the cost of the loss of PAPR performance of the system. In this paper, we introduce an improved PTS optimization method with superimposed training. Simulation results show that, compared with conventional PTS, improved PTS scheme can achieve better PAPR performance while be implemented with lower computation complexity of the system.展开更多
Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by mu...Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.展开更多
The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation wit...The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.展开更多
In this paper, an intuitive comparison of the computational performance of orthogonal frequency division multiplexing (OFDM) system has been made in terms of complex calculations required using different Fourier trans...In this paper, an intuitive comparison of the computational performance of orthogonal frequency division multiplexing (OFDM) system has been made in terms of complex calculations required using different Fourier transform techniques. The different transform techniques are introduced such as discrete Fourier transform (DFT) and various types of fast Fourier transform (FFT) as 2-radix FFT, 4-radix FFT etc. and the very recent very fast Fourier transform (VFFT). With intuitive mathematical analysis, it has been shown that with the reduced complexity that VFFT can offer, OFDM performance can be greatly improved in terms of calculations needed.展开更多
Orthogonal frequency division multiplexing-interleave division multiple access (OFDM-IDMA) systems may suffer from serious inter-carrier interference (ICI) in time-and frequency-selective (doubly selective) channels. ...Orthogonal frequency division multiplexing-interleave division multiple access (OFDM-IDMA) systems may suffer from serious inter-carrier interference (ICI) in time-and frequency-selective (doubly selective) channels. In such case, the conventional OFDM-IDMA detection algorithm for quasi-static channels will result in significantly performance degradation. In this paper, signal detection is investigated for OFDM-IDMA uplink over doubly selective channels. Firstly, the impact of time-varying channels for OFDM-IDMA uplink is analyzed, which leads to the failure of the conventional algorithm. Secondly, a novel iterative detection algorithm is developed based on an integrated interference canceller, which can iteratively estimate and mitigate the ICI as well as multiple access interference (MAI) simultaneously. In addition, an improved detection algorithm is derived for reducing the complexity using an approximation to the mean and variance of the interference. Simulation results indicate that the proposed algorithm can significantly enhance the system performance to the conventional case, and the improved algorithm can strike a balance between performance and complexity.展开更多
In this paper, rejection of multiple narrowband interferers in a binary phase shift keying modulated orthogonal frequency division multiplexing (BPSK-OFDM) system is investigated. The BPSK-OFDM system in consideration...In this paper, rejection of multiple narrowband interferers in a binary phase shift keying modulated orthogonal frequency division multiplexing (BPSK-OFDM) system is investigated. The BPSK-OFDM system in consideration operates in an additive white Gaussian noise (AWGN) channel. A cascade complex coefficient adaptive infinite impulse response (IIR) notch filter with gradient-based algorithm is used to reject the interferers. Bit error ratio (BER) performance of the system is studied and a general closed-form expression is derived assuming negligible steady-state leakage NBI and by estimating the decision variable as Gaussian distributed based on Central Limit Theorem (CLT). Dependence of the BER performance on the notch bandwidth coefficient is demonstrated by the analysis. Extensive simulation results are included to substantiate accuracy of the analysis.展开更多
文摘Orthogonal frequency division multiplexing (OFDM) is vastly used in wireless networks. Its superiority relies on the fact that information can be split in large amount of frequencies. Each frequency is called information subcarrier. OFDM exhibits excellent annotation in channel fades and interferers as only a few subcarriers can be affected and consequently a small part of the original data stream can be lost. Orthogonality between frequencies ensures better spectrum management and obviates the danger of intersymbol interference. However, an essential problem exists. OFDM systems have high peak to average power ratio. This implies large fluctuations in signal power, ending up in increasing complexity of ADCs and DACs. Also, power amplifiers must work in a larger linear dynamic region. In this paper we present two new techniques for reducing Peak to Average Power Ratio (PAPR), that can be added in any OFDM system and we compare them with other existing schemes.
文摘An accurate frequency synchronization method using the zadoff-chu (ZC) constant envelop preamble is analyzed, and a new preamble weighted by pseudo-noise sequence is used for orthogonal frequency division multiplexing (OFDM) systems. Using this method, frequency offset estimator range is greatly enlarged with no loss in accuracy. The range of the frequency estimation is ±30 of subcarrier spacing using ZC sequence as preamble. Simulations in the MATLAB for an AWGN channel show that the proposed method achieves superior performance to existing techniques in terms of frequency accuracy and range.
文摘LTE (Long Term Evolution) is the latest technology in wireless communication. It is being used because of its peak data rate and spectral efficiency. LTE uses OFDMA (Orthogonal Frequency Division Multiple Access) technology for radio transmission and reception in downlink. OFDM is a multicarrier modulation and multiplexing technique to improve data rate, spectral efficiency and minimize the problem of fading and ISI (Inter Symbol Interference). Many transceivers design have been designed for OFDM system to minimize error and maximize throughput of the information being transmitted and received at the system. The purpose of this article is to present a survey of the published literature which deals with various OFDM transceiver design, focusing on the merits and demerits of the corresponding OFDM transceiver design.
文摘In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.
文摘The high peak-to-average power ratio (PAPR) is one of the serious problems in the application of OFDM technology. In this paper, an improved partial transmit sequence (PTS) scheme based on combining the grouped discrete cosine transform (DCT) with PTS technique is proposed. In the proposed scheme, the adjacent partitioned data are firstly transformed by a DCT into new modified data. After that the proposed scheme utilizes the conventional PTS technique to further reduce the PAPR of the OFDM signal. The performance of the PAPR is evaluated using a computer simulation. The simulation results indicate that the proposed scheme may improve the PAPR performance compared with the conventional PTS scheme, the grouped DCT scheme, and original OFDM respectively.
基金supported by the State Grid Corporation of China (No. 5101/2017-3205A)the Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications (Jinan University)the National Natural Science Foundation of China (NSFC) (61571057, 61501214, 61527820, 61575082)
文摘A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize frame synchronization,compensate the carrier frequency offset(CFO),and estimate and equalize channel simultaneously.Since there is no pilot signals or training symbols in TDS-OFDM,the proposed scheme can achieve higher spectral efficiency(SE)above 10%improvement comparing with CPOFDM.The proposed method is implemented and verified in a 28GBaud QPSK OFDM system and a 28GBaud 16QAM OFDM system.It is demonstrated that the proposed scheme shows high CFO estimation accuracy and synchronous accuracy.Under CFO and linewidth of laser source set as 100MHz and 100kHz respectively,BER of QPSK OFDM system is below 3.8e-3 at the optical signal-to-noise ratio(OSNR)of 13dB,and BER of 16QAM OFDM system is below 3.8e-3 at the OSNR of 20dB.
文摘Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, its remarkable drawback is the high computational complexity. In order to reduce the computational complexity, currently many PTS methods have been proposed but with the cost of the loss of PAPR performance of the system. In this paper, we introduce an improved PTS optimization method with superimposed training. Simulation results show that, compared with conventional PTS, improved PTS scheme can achieve better PAPR performance while be implemented with lower computation complexity of the system.
基金supported by the Doctoral Scientific Fund of the Ministry of Education of the People’s Republic of China(20120145120011)
文摘Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.
基金Supported by the National Natural Science Foundation of China(No.61601136)
文摘The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.
文摘In this paper, an intuitive comparison of the computational performance of orthogonal frequency division multiplexing (OFDM) system has been made in terms of complex calculations required using different Fourier transform techniques. The different transform techniques are introduced such as discrete Fourier transform (DFT) and various types of fast Fourier transform (FFT) as 2-radix FFT, 4-radix FFT etc. and the very recent very fast Fourier transform (VFFT). With intuitive mathematical analysis, it has been shown that with the reduced complexity that VFFT can offer, OFDM performance can be greatly improved in terms of calculations needed.
文摘Orthogonal frequency division multiplexing-interleave division multiple access (OFDM-IDMA) systems may suffer from serious inter-carrier interference (ICI) in time-and frequency-selective (doubly selective) channels. In such case, the conventional OFDM-IDMA detection algorithm for quasi-static channels will result in significantly performance degradation. In this paper, signal detection is investigated for OFDM-IDMA uplink over doubly selective channels. Firstly, the impact of time-varying channels for OFDM-IDMA uplink is analyzed, which leads to the failure of the conventional algorithm. Secondly, a novel iterative detection algorithm is developed based on an integrated interference canceller, which can iteratively estimate and mitigate the ICI as well as multiple access interference (MAI) simultaneously. In addition, an improved detection algorithm is derived for reducing the complexity using an approximation to the mean and variance of the interference. Simulation results indicate that the proposed algorithm can significantly enhance the system performance to the conventional case, and the improved algorithm can strike a balance between performance and complexity.
文摘In this paper, rejection of multiple narrowband interferers in a binary phase shift keying modulated orthogonal frequency division multiplexing (BPSK-OFDM) system is investigated. The BPSK-OFDM system in consideration operates in an additive white Gaussian noise (AWGN) channel. A cascade complex coefficient adaptive infinite impulse response (IIR) notch filter with gradient-based algorithm is used to reject the interferers. Bit error ratio (BER) performance of the system is studied and a general closed-form expression is derived assuming negligible steady-state leakage NBI and by estimating the decision variable as Gaussian distributed based on Central Limit Theorem (CLT). Dependence of the BER performance on the notch bandwidth coefficient is demonstrated by the analysis. Extensive simulation results are included to substantiate accuracy of the analysis.