With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar...Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.展开更多
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti...An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.展开更多
Based on the lung adenocarcinoma(LUAD)gene expression data from the cancer genome atlas(TCGA)database,the Stromal score,Immune score and Estimate score in tumor microenvironment(TME)were computed by the Estimation of ...Based on the lung adenocarcinoma(LUAD)gene expression data from the cancer genome atlas(TCGA)database,the Stromal score,Immune score and Estimate score in tumor microenvironment(TME)were computed by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data(ESTIMATE)algorithm.And gene modules significantly related to the three scores were identified by weighted gene coexpression network analysis(WGCNA).Based on the correlation coefficients and P values,899 key genes affecting tumor microenvironment were obtained by selecting the two most correlated modules.It was suggested through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis that these key genes were significantly involved in immune-related or cancer-related terms.Through univariate cox regression and elastic network analysis,genes associated with prognosis of the LUAD patients were screened out and their prognostic values were further verified by the survival analysis and the University of ALabama at Birmingham CANcer(UALCAN)database.The results indicated that eight genes were significantly related to the overall survival of LUAD.Among them,six genes were found differentially expressed between tumor and control samples.And immune infiltration analysis further verified that all the six genes were significantly related to tumor purity and immune cells.Therefore,these genes were used eventually for constructing a Naive Bayes projection model of LUAD.The model was verified by the receiver operating characteristic(ROC)curve where the area under curve(AUC)reached 92.03%,which suggested that the model could discriminate the tumor samples from the normal accurately.Our study provided an effective model for LUAD projection which improved the clinical diagnosis and cure of LUAD.The result also confirmed that the six genes in the model construction could be the potential prognostic biomarkers of LUAD.展开更多
Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a ...Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a decision tree can be regarded as a classifier tree,in which each classifier on a non-root node is trained in decision regions of the classifier on the parent node.Meanwhile,the NBTree algorithm,which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as the root and leaf classifiers respectively,can also be regarded as training naive Bayes classifiers in decision regions of the C4.5 algorithm.We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in decision regions of the naive Bayes classifier.These four novel algorithms all generate two-level classifier trees with the naive Bayes classifier as root classifiers.The SD and three SD-soft algorithms can make good use of both the information contained in instances near decision boundaries,and those that may be ignored by the naive Bayes classifier.Finally,we conduct experiments on 30 data sets from the UC Irvine (UCI) repository.Experiment results show that the SD algorithm can obtain better generali-zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm and support vector machine (SVM) as leaf classifiers.Further experiments indicate that our three SD-soft algorithms can achieve better generalization abilities than the SD algorithm when argument values are selected appropriately.展开更多
Debris flow triggered by rainfall that accompanies a volcanic eruption is a serious secondary impact of a volcanic disaster.The probability of debris flow events can be estimated based on the prior information of rain...Debris flow triggered by rainfall that accompanies a volcanic eruption is a serious secondary impact of a volcanic disaster.The probability of debris flow events can be estimated based on the prior information of rainfall from historical and geomorphological data that are presumed to relate to debris flow occurrence.In this study,a debris flow disaster warning system was developed by applying the Na?¨ve Bayes Classifier(NBC).The spatial likelihood of the hazard is evaluated at a small subbasin scale by including high-resolution rainfall measurements from X-band polarimetric weather radar,a topographic factor,and soil type as predictors.The study was conducted in the Gendol River Basin of Mount Merapi,one of the most active volcanoes in Indonesia.Rainfall and debris flow occurrence data were collected for the upper Gendol River from October 2016 to February 2018 and divided into calibration and validation datasets.The NBC was used to estimate the status of debris flow incidences displayed in the susceptibility map that is based on the posterior probability from the predictors.The system verification was performed by quantitative dichotomous quality indices along with a contingency table.Using the validation datasets,the advantage of the NBC for estimating debris flow occurrence is confirmed.This work contributes to existing knowledge on estimating debris flow susceptibility through the data mining approach.Despite the existence of predictive uncertainty,the presented system could contribute to the improvement of debris flow countermeasures in volcanic regions.展开更多
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
基金This researchwork is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R411),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.
文摘An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.
基金Our deepest gratitude goes to the editors and anonymous reviewers for their careful work and thoughtful suggestions that have helped to improve this paper substantially.The workwas supported by the National Natural Science Foundation of China(No.12071382)the Bowang scholar youth talent program(Zhiqiang Ye)of Chongqing Normal University,the Natural Science and Engineering Research Council of Canada,and the Canada Research Chair Program(JWu).
文摘Based on the lung adenocarcinoma(LUAD)gene expression data from the cancer genome atlas(TCGA)database,the Stromal score,Immune score and Estimate score in tumor microenvironment(TME)were computed by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data(ESTIMATE)algorithm.And gene modules significantly related to the three scores were identified by weighted gene coexpression network analysis(WGCNA).Based on the correlation coefficients and P values,899 key genes affecting tumor microenvironment were obtained by selecting the two most correlated modules.It was suggested through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis that these key genes were significantly involved in immune-related or cancer-related terms.Through univariate cox regression and elastic network analysis,genes associated with prognosis of the LUAD patients were screened out and their prognostic values were further verified by the survival analysis and the University of ALabama at Birmingham CANcer(UALCAN)database.The results indicated that eight genes were significantly related to the overall survival of LUAD.Among them,six genes were found differentially expressed between tumor and control samples.And immune infiltration analysis further verified that all the six genes were significantly related to tumor purity and immune cells.Therefore,these genes were used eventually for constructing a Naive Bayes projection model of LUAD.The model was verified by the receiver operating characteristic(ROC)curve where the area under curve(AUC)reached 92.03%,which suggested that the model could discriminate the tumor samples from the normal accurately.Our study provided an effective model for LUAD projection which improved the clinical diagnosis and cure of LUAD.The result also confirmed that the six genes in the model construction could be the potential prognostic biomarkers of LUAD.
基金supported by the National Natural Science Foundation of China (No.60970081)the National Basic Research Program (973) of China (No.2010CB327903)
文摘Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a decision tree can be regarded as a classifier tree,in which each classifier on a non-root node is trained in decision regions of the classifier on the parent node.Meanwhile,the NBTree algorithm,which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as the root and leaf classifiers respectively,can also be regarded as training naive Bayes classifiers in decision regions of the C4.5 algorithm.We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in decision regions of the naive Bayes classifier.These four novel algorithms all generate two-level classifier trees with the naive Bayes classifier as root classifiers.The SD and three SD-soft algorithms can make good use of both the information contained in instances near decision boundaries,and those that may be ignored by the naive Bayes classifier.Finally,we conduct experiments on 30 data sets from the UC Irvine (UCI) repository.Experiment results show that the SD algorithm can obtain better generali-zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm and support vector machine (SVM) as leaf classifiers.Further experiments indicate that our three SD-soft algorithms can achieve better generalization abilities than the SD algorithm when argument values are selected appropriately.
基金supported by the Science and Technology Research Partnership for Sustainable Development(SATREPS)Japan Science and Technology Agency(JST)the Japan International Cooperation Agency(JICA)
文摘Debris flow triggered by rainfall that accompanies a volcanic eruption is a serious secondary impact of a volcanic disaster.The probability of debris flow events can be estimated based on the prior information of rainfall from historical and geomorphological data that are presumed to relate to debris flow occurrence.In this study,a debris flow disaster warning system was developed by applying the Na?¨ve Bayes Classifier(NBC).The spatial likelihood of the hazard is evaluated at a small subbasin scale by including high-resolution rainfall measurements from X-band polarimetric weather radar,a topographic factor,and soil type as predictors.The study was conducted in the Gendol River Basin of Mount Merapi,one of the most active volcanoes in Indonesia.Rainfall and debris flow occurrence data were collected for the upper Gendol River from October 2016 to February 2018 and divided into calibration and validation datasets.The NBC was used to estimate the status of debris flow incidences displayed in the susceptibility map that is based on the posterior probability from the predictors.The system verification was performed by quantitative dichotomous quality indices along with a contingency table.Using the validation datasets,the advantage of the NBC for estimating debris flow occurrence is confirmed.This work contributes to existing knowledge on estimating debris flow susceptibility through the data mining approach.Despite the existence of predictive uncertainty,the presented system could contribute to the improvement of debris flow countermeasures in volcanic regions.