BACKGROUND Several studies have demonstrated a correlation between esophageal cancer(EC)and perturbed urinary metabolomic profiles,but none has described the correlation between urine metabolite profiles and those of ...BACKGROUND Several studies have demonstrated a correlation between esophageal cancer(EC)and perturbed urinary metabolomic profiles,but none has described the correlation between urine metabolite profiles and those of the tumor and adjacent esophageal mucosa in the same patient.AIM To investigate how urinary metabolic phenotypes were linked to the changes in the biochemical landscape of esophageal tumors.METHODS Nuclear magnetic resonance-based metabolomics were applied to esophageal tumor tissues and adjacent normal mucosal tissues alongside patient-matched urine samples.RESULTS Analysis revealed that specific metabolite changes overlapped across both metrics,including glucose,glutamate,citrate,glycine,creatinine and taurine,indicating that the networks for metabolic pathway perturbations in EC,potentially involved in but not limited to disruption of fatty acid metabolism,glucose and glycolytic metabolism,tricarboxylic acid cycle and glutaminolysis.Additionally,changes in most urinary biomarkers correlated with changes in biomarker candidates in EC tissues,implying enhanced energy production for rapid cell proliferation.CONCLUSION Overall,these associations provide evidence for distinct metabolic signatures and pathway disturbances between the tumor tissues and urine of EC patients,and changes in urinary metabolic signature could reflect reprogramming of the aforementioned metabolic pathways in EC tissues.Further investigation is needed to validate these initial findings using larger samples and to establish the underlying mechanism of EC progression.展开更多
Hyaluronic acid (HA) preparations have emerged as pivotal components in contemporary dentistry, gaining widespread recognition for their multifaceted roles in various biological functions. Extensive literature undersc...Hyaluronic acid (HA) preparations have emerged as pivotal components in contemporary dentistry, gaining widespread recognition for their multifaceted roles in various biological functions. Extensive literature underscores the significance of HA in maintaining tissue water balance, fostering cell proliferation, promoting rapid cell migration, influencing cell differentiation during organism development, and facilitating tissue regeneration. Notably, HA’s interactions with cell surface receptors contribute to the viscosity of synovial fluid, activate the immune system, and enhance cartilage elasticity. Beyond these established functions, HA has also been investigated for its potential involvement in determining and studying the hormetic effects of radon water, adding a novel dimension to its applications in dental research. A thorough exploration of existing studies reveals a nuanced understanding of how HA interventions impact the outcomes of dental procedures. The comprehensive scope of these investigations allows for a more accurate assessment of the potential effectiveness of specific interventions and provides valuable insights into post-procedural prognoses for individual patients. This synthesis of literature serves as the foundation for elucidating the intricate interplay between HA, radon exposure, and their relevance in modern dental practices.展开更多
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop inno...Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential.展开更多
Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading...Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading to the development of clustered regularly interspaced short palindromic repeats(CRISPRs) and CRISPR-associated systems,zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering.Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology,develop innovative next generation gene therapy,stem cell-based regenerative therapy,and personalized medicine for corneal and other ocular diseases.In this review we describe latest developments in the field of genome editing,current challenges,and future prospects for the development of personalized genebased medicine for corneal diseases.The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.展开更多
BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mi...BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mineral and bone disorder(CKD-MBD)is a systemic disease of mineral and bone metabolism.It is associated with an increased risk of fracture.Few studies have reported the use of PVA in patients with CKD-MBD.We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA.CASE SUMMARY A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago.According to physical examination,imaging and laboratory findings,diagnoses of T12 VCF,CKD-MBD,and chronic kidney disease stage 5 were established.He then received percutaneous vertebroplasty at T12 vertebra.Fourteen weeks later,he presented with T12 and L1 vertebral refractures caused by lumbar sprain.Once again,he was given PVA which was optimized for the refractured vertebrae.Although the short-term postoperative effect was satisfactory,he reported chronic low back pain again at the 3-month follow-up.CONCLUSION It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD.It may increase the risk of vertebral refracture.Furthermore,the PVA surgical technique needs to be optimized according to the condition of the patient.The medium-and long-term effects of PVA remain uncertain in patients with CKD-MBD.展开更多
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characte...BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.展开更多
Objective The aim of the study was to investigate the expression of proteins in colonic tissues of mice with ulcerative colitis(UC) by using isobaric tags for relative and absolute quantitation(iTRAQ), probe into the ...Objective The aim of the study was to investigate the expression of proteins in colonic tissues of mice with ulcerative colitis(UC) by using isobaric tags for relative and absolute quantitation(iTRAQ), probe into the pathogenesis of UC, and find potential biomarkers of UC. Methods Forty C57 mice were randomly divided into the control and model groups(20 mice in each group). The mice in the model group were administered dextran sulphate sodium(DSS) for 7 consecutive days ad libitum to induce acute colitis, and the colon tissue was extracted on the 8 th day after the successful establishment of the UC model. Proteins were identified by the i TRAQ and tandem mass spectrometry techniques,and the identified proteins were analyzed by bioinformatics. Results A total of 4019 proteins were identified among the two groups. Among them, 317 significant differentially expressed proteins(DEPs) were detected according to the screening criteria for selecting DEPs, i.e. fold change ratios ≥ 1.5 or ≤ 0.67 and P-values < 0.05, of which 156 were upregulated and 161 were downregulated. In the Gene Ontology(GO) analysis, the DEPs were classified into 48 functional categories, which contained biological process, cellular component, and molecular function. Based on the 317 DEPs, the KEGG pathway analysis identified 160 vital pathways.Conclusion DEPs in colonic tissues of mice with UC were screened using the iTRAQ technique, which laid a foundation for further studies regarding the pathogenesis of UC.展开更多
Chara cterized by positive symptoms(such as changes in behavior or thoughts,including delusions and hallu cinations),negative symptoms(such as apathy,anhedonia,and social withdrawal),and cognitive impairments,schizoph...Chara cterized by positive symptoms(such as changes in behavior or thoughts,including delusions and hallu cinations),negative symptoms(such as apathy,anhedonia,and social withdrawal),and cognitive impairments,schizophrenia is a chro nic,severe,and disabling mental disorder with late adolescence or early adulthood onset,Antipsychotics are the most commonly used drugs to treat schizophrenia,but those currently in use do not fully reverse all three types of symptoms characte rizing this condition.Schizophrenia is frequently misdiagnosed,resulting in a delay of or inappropriate treatment.Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia.The recent studies reviewed included microRNA profiling in blood-and urine-based materials and nervous tissue mate rials.From the studies that had validated the preliminary findings,potential candidate biomarkers for schizophrenia in adults could be miR-22-3p,-30e-5p,-92a-3p,-148b-5p,-181a-3p,-181a-5p,-181b-5p,-199 b-5p,-137 in whole blood,and miR-130b,-193a-3p in blood plasma.Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b,-193a-3p,-132,-195,-30e,-432 in blood plasma.Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.展开更多
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ...In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.展开更多
BACKGROUND Tooth defects can cause elongation of occlusal teeth,leading to insufficient repair space.The combination of dental implant restoration and orthodontic treatment of oblique adjacent teeth has a significant ...BACKGROUND Tooth defects can cause elongation of occlusal teeth,leading to insufficient repair space.The combination of dental implant restoration and orthodontic treatment of oblique adjacent teeth has a significant therapeutic effect.AIM To explore clinical efficacy,bone density,and follow-up of implant and orthodontic treatment for patients with inclined adjacent teeth.METHODS In total,98 patients with oblique adjacent teeth were randomly assigned to implant restoration combined with orthodontic treatment(group A,n=49)or to receive implant restoration alone(group B,n=49).Changes in alveolar ridge bone density and apical bone density were observed before and after treatment in the two groups.Changes in chewing function and language function were compared between the two groups of patients.Follow-up lasted for 12 mo after repair to observe any adverse reactions in the oral cavity.RESULTS The clinical effective rates of group A and group B were 97.96%and 85.71%,respectively,with group A having a higher clinical effective rate than group B.After treatment,the bone density of the alveolar ridge and apical bone in both groups decreased compared to before treatment,while the chewing and language functions improved.The changes in various indicators in group A were more significant.After treatment,the satisfaction rate of group A(97.96%)was higher than that of group B(79.59%).The incidence of adverse reactions in group A(2.04%)was lower than that in group B(24.49%).CONCLUSION The amalgamation of implant restoration and orthodontic treatment for adjacent tilted teeth demonstrates notable clinical efficacy,diminishes alveolar bone resorption,and fosters patient functional rehabilitation while exhibiting negligible adverse reactions.展开更多
基金Supported by the National Natural Science Foundation of China,No.81471729 and No.81101102the Science and Technology and Planning Project of Guangdong Province,No.2016A020216025+2 种基金the Research Award Fund for Outstanding Young Teachers in Higher Education Institutions,Guangdong Province,No.YQ2015245the National Natural Science Foundation of Guangdong Province,No.S2011010004973the Department of Education of Guangdong Province,No.2017KTSCX071
文摘BACKGROUND Several studies have demonstrated a correlation between esophageal cancer(EC)and perturbed urinary metabolomic profiles,but none has described the correlation between urine metabolite profiles and those of the tumor and adjacent esophageal mucosa in the same patient.AIM To investigate how urinary metabolic phenotypes were linked to the changes in the biochemical landscape of esophageal tumors.METHODS Nuclear magnetic resonance-based metabolomics were applied to esophageal tumor tissues and adjacent normal mucosal tissues alongside patient-matched urine samples.RESULTS Analysis revealed that specific metabolite changes overlapped across both metrics,including glucose,glutamate,citrate,glycine,creatinine and taurine,indicating that the networks for metabolic pathway perturbations in EC,potentially involved in but not limited to disruption of fatty acid metabolism,glucose and glycolytic metabolism,tricarboxylic acid cycle and glutaminolysis.Additionally,changes in most urinary biomarkers correlated with changes in biomarker candidates in EC tissues,implying enhanced energy production for rapid cell proliferation.CONCLUSION Overall,these associations provide evidence for distinct metabolic signatures and pathway disturbances between the tumor tissues and urine of EC patients,and changes in urinary metabolic signature could reflect reprogramming of the aforementioned metabolic pathways in EC tissues.Further investigation is needed to validate these initial findings using larger samples and to establish the underlying mechanism of EC progression.
文摘Hyaluronic acid (HA) preparations have emerged as pivotal components in contemporary dentistry, gaining widespread recognition for their multifaceted roles in various biological functions. Extensive literature underscores the significance of HA in maintaining tissue water balance, fostering cell proliferation, promoting rapid cell migration, influencing cell differentiation during organism development, and facilitating tissue regeneration. Notably, HA’s interactions with cell surface receptors contribute to the viscosity of synovial fluid, activate the immune system, and enhance cartilage elasticity. Beyond these established functions, HA has also been investigated for its potential involvement in determining and studying the hormetic effects of radon water, adding a novel dimension to its applications in dental research. A thorough exploration of existing studies reveals a nuanced understanding of how HA interventions impact the outcomes of dental procedures. The comprehensive scope of these investigations allows for a more accurate assessment of the potential effectiveness of specific interventions and provides valuable insights into post-procedural prognoses for individual patients. This synthesis of literature serves as the foundation for elucidating the intricate interplay between HA, radon exposure, and their relevance in modern dental practices.
基金Supported by Research Funds of the German Federal Ministry of Education and Research (01GN0531 and 01GN0939)Proj-ect Commissioned by the European Community ("CASCADE"HEALTH-F5-2009-223236).
文摘Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential.
文摘Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading to the development of clustered regularly interspaced short palindromic repeats(CRISPRs) and CRISPR-associated systems,zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering.Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology,develop innovative next generation gene therapy,stem cell-based regenerative therapy,and personalized medicine for corneal and other ocular diseases.In this review we describe latest developments in the field of genome editing,current challenges,and future prospects for the development of personalized genebased medicine for corneal diseases.The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.
文摘BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mineral and bone disorder(CKD-MBD)is a systemic disease of mineral and bone metabolism.It is associated with an increased risk of fracture.Few studies have reported the use of PVA in patients with CKD-MBD.We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA.CASE SUMMARY A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago.According to physical examination,imaging and laboratory findings,diagnoses of T12 VCF,CKD-MBD,and chronic kidney disease stage 5 were established.He then received percutaneous vertebroplasty at T12 vertebra.Fourteen weeks later,he presented with T12 and L1 vertebral refractures caused by lumbar sprain.Once again,he was given PVA which was optimized for the refractured vertebrae.Although the short-term postoperative effect was satisfactory,he reported chronic low back pain again at the 3-month follow-up.CONCLUSION It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD.It may increase the risk of vertebral refracture.Furthermore,the PVA surgical technique needs to be optimized according to the condition of the patient.The medium-and long-term effects of PVA remain uncertain in patients with CKD-MBD.
基金the National Science Center,No.N407121940the Wroclaw Centre of Biotechnology,the Leading National Research Centre(KNOW)program for the years 2014-2018
文摘BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
基金Supported by a grant from the Natural Science Foundation of Hubei Province(No.2011CHB025)
文摘Objective The aim of the study was to investigate the expression of proteins in colonic tissues of mice with ulcerative colitis(UC) by using isobaric tags for relative and absolute quantitation(iTRAQ), probe into the pathogenesis of UC, and find potential biomarkers of UC. Methods Forty C57 mice were randomly divided into the control and model groups(20 mice in each group). The mice in the model group were administered dextran sulphate sodium(DSS) for 7 consecutive days ad libitum to induce acute colitis, and the colon tissue was extracted on the 8 th day after the successful establishment of the UC model. Proteins were identified by the i TRAQ and tandem mass spectrometry techniques,and the identified proteins were analyzed by bioinformatics. Results A total of 4019 proteins were identified among the two groups. Among them, 317 significant differentially expressed proteins(DEPs) were detected according to the screening criteria for selecting DEPs, i.e. fold change ratios ≥ 1.5 or ≤ 0.67 and P-values < 0.05, of which 156 were upregulated and 161 were downregulated. In the Gene Ontology(GO) analysis, the DEPs were classified into 48 functional categories, which contained biological process, cellular component, and molecular function. Based on the 317 DEPs, the KEGG pathway analysis identified 160 vital pathways.Conclusion DEPs in colonic tissues of mice with UC were screened using the iTRAQ technique, which laid a foundation for further studies regarding the pathogenesis of UC.
文摘Chara cterized by positive symptoms(such as changes in behavior or thoughts,including delusions and hallu cinations),negative symptoms(such as apathy,anhedonia,and social withdrawal),and cognitive impairments,schizophrenia is a chro nic,severe,and disabling mental disorder with late adolescence or early adulthood onset,Antipsychotics are the most commonly used drugs to treat schizophrenia,but those currently in use do not fully reverse all three types of symptoms characte rizing this condition.Schizophrenia is frequently misdiagnosed,resulting in a delay of or inappropriate treatment.Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia.The recent studies reviewed included microRNA profiling in blood-and urine-based materials and nervous tissue mate rials.From the studies that had validated the preliminary findings,potential candidate biomarkers for schizophrenia in adults could be miR-22-3p,-30e-5p,-92a-3p,-148b-5p,-181a-3p,-181a-5p,-181b-5p,-199 b-5p,-137 in whole blood,and miR-130b,-193a-3p in blood plasma.Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b,-193a-3p,-132,-195,-30e,-432 in blood plasma.Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.
基金This research was funded by the Natural Science Research Project of Higher Education Institutions in Anhui Province(Grant No.2022AH040045)the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(Grant No.2021-YF22).
文摘In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.
基金the Review Committee of General Hospital of Central Theater Command(Approval No.05901).
文摘BACKGROUND Tooth defects can cause elongation of occlusal teeth,leading to insufficient repair space.The combination of dental implant restoration and orthodontic treatment of oblique adjacent teeth has a significant therapeutic effect.AIM To explore clinical efficacy,bone density,and follow-up of implant and orthodontic treatment for patients with inclined adjacent teeth.METHODS In total,98 patients with oblique adjacent teeth were randomly assigned to implant restoration combined with orthodontic treatment(group A,n=49)or to receive implant restoration alone(group B,n=49).Changes in alveolar ridge bone density and apical bone density were observed before and after treatment in the two groups.Changes in chewing function and language function were compared between the two groups of patients.Follow-up lasted for 12 mo after repair to observe any adverse reactions in the oral cavity.RESULTS The clinical effective rates of group A and group B were 97.96%and 85.71%,respectively,with group A having a higher clinical effective rate than group B.After treatment,the bone density of the alveolar ridge and apical bone in both groups decreased compared to before treatment,while the chewing and language functions improved.The changes in various indicators in group A were more significant.After treatment,the satisfaction rate of group A(97.96%)was higher than that of group B(79.59%).The incidence of adverse reactions in group A(2.04%)was lower than that in group B(24.49%).CONCLUSION The amalgamation of implant restoration and orthodontic treatment for adjacent tilted teeth demonstrates notable clinical efficacy,diminishes alveolar bone resorption,and fosters patient functional rehabilitation while exhibiting negligible adverse reactions.