By conducting experimental measurements and numerical simulations of air distribution and microorganism pollutant distribution in the auditorium and game area in a gymnasium,pollutant dispersion control and indoor air...By conducting experimental measurements and numerical simulations of air distribution and microorganism pollutant distribution in the auditorium and game area in a gymnasium,pollutant dispersion control and indoor air quality improvement methods were put forward. The results show that the fungi and bacteria concentration levels are less than the magnitude of 103 CFU (colony-forming units) which meets the requirements of indoor air quality standard. The numerical simulation results quantitatively agree with the experimental data while some differences between theoretical data and experimental data exist in air distributions. People number in gymnasium plays an important role in affecting indoor air quality and the environmental parameters attained the standard.展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
Mercury emitted from direct combustion of high-mercury coal does great harm to the environment. To make good use of high-mercury coal, it is necessary to study the occurrence characteristics of mercury in coal and hig...Mercury emitted from direct combustion of high-mercury coal does great harm to the environment. To make good use of high-mercury coal, it is necessary to study the occurrence characteristics of mercury in coal and high-efficient methods of mercury removal. In this paper, high-mercury coal of Guizhou Province of China was taken as an object to study the nature of mercury in coal and the rule of mercury removal by dry preparation method. Mercury mainly distributes in the medium and high density fractions, and has a good affinity with silicon, aluminum, iron, titanium, potassium, calcium, zinc, sodium and magnesium. It exists in minerals formed by these elements and presents significant correlation with ash in coal. After the high-mercury coal is separated by air dense medium fluidized bed, mercury content of clean coal is reduced to 1/10 of raw coal, while mercury content of gangue is increased to 3 times that of raw coal. This indicates that mercury in raw coal is rejected greatly by ADMFB and enriched in highdensity fractions. The rates of ash removal and mercury removal decrease with the density and present a very high correlation.展开更多
In this paper we consider the arrival process of a multiserver queue governed by a discrete autoregressive process of order 1 [DAR(1)] with Quasi-Negative Binomial Distribution-II as the marginal distribution. This di...In this paper we consider the arrival process of a multiserver queue governed by a discrete autoregressive process of order 1 [DAR(1)] with Quasi-Negative Binomial Distribution-II as the marginal distribution. This discrete time multiserver queueing system with autoregressive arrivals is more suitable for modeling the Asynchronous Transfer Mode(ATM) multiplexer queue with Variable Bit Rate (VBR) coded teleconference traffic. DAR(1) is described by a few parameters and it is easy to match the probability distribution and the decay rate of the autocorrelation function with those of measured real traffic. For this queueing system we obtained the stationary distribution of the system size and the waiting time distribution of an arbitrary packet with the help of matrix analytic methods and the theory of Markov regenerative processes. Also we consider negative binomial distribution, generalized Poisson distribution, Borel-Tanner distribution defined by Frank and Melvin(1960) and zero truncated generalized Poisson distribution as the special cases of Quasi-Negative Binomial Distribution-II. Finally, we developed computer programmes for the simulation and empirical study of the effect of autocorrelation function of input traffic on the stationary distribution of the system size as well as waiting time of an arbitrary packet. The model is applied to a real data of number of customers waiting for checkout in an airport and it is established that the model well suits this data.展开更多
A wide survey was conducted to study plant-parasitic nematodes(PPNs)associated with Prunus groves in Spain.This research aimed to determine the prevalence and distribution of PPNs in Prunus groves,as well as the influ...A wide survey was conducted to study plant-parasitic nematodes(PPNs)associated with Prunus groves in Spain.This research aimed to determine the prevalence and distribution of PPNs in Prunus groves,as well as the influence of explanatory variables describing soil,climate and agricultural management in structuring the variation of PPNs community composition.A total of 218 sampling sites were surveyed and 84 PPN species belonging to 32 genera were identified based of an integrative taxonomic approach.PPN species considered as potential limiting factors in Prunus production,such as Meloidogyne arenaria,M.incognita,M.javanica,Pratylenchus penetrans and P.vulnus,were identified in this survey.Seven soil physico-chemical(C,Mg,N,Na,OM,P,pH and clay,loamy sand and sandy loam texture classes),four climate(Bio04,Bio05,Bio13 and Bio14)and four agricultural management variables(grove-use history less than 10 years,irrigation,apricot seedling rootstock,and Montclar rootstock)were identified as the most influential variables driving spatial patterns of PPNs communities.In particular,younger plantations showed higher values for species richness and diversity indices than groves cultivated for more than 20 years with Prunus spp.Our study increases the knowledge of the distribution and prevalence of PPNs associated with Prunus rhizosphere,as well as on the influence of explanatory variables driving the spatial structure PPNs communities,which has important implications for the successful design of sustainable management strategies in the future in this agricultural system.展开更多
Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct ...Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.展开更多
Objective:To investigate the quality of indoor air of different wards and units of Olabisi Onabanjo University Teaching Hospital, Sagamu, to ascertain their contribution to infection rate in the hospital.Methods:The m...Objective:To investigate the quality of indoor air of different wards and units of Olabisi Onabanjo University Teaching Hospital, Sagamu, to ascertain their contribution to infection rate in the hospital.Methods:The microbial quality of indoor air of nine wards/units of Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria was conducted. Sedimentation technique using open Petri-dishes containing different culture media was employed and samplings were done twice daily, one in the morning shortly after cleaning and before influx of people/patients into the wards/units and the other in the evening when a lot of activities would have taken place in these wards. Isolates were identified according to standard methods.Results:Results showed that there was a statistically significant difference(氈2= 6.0167) in the bacteria population of the different sampling time whereas it was not so for fungi population(氈2= 0.2857). Male medical ward(MMW) and male surgical general(MSG) recorded the highest bacterial and fungal growth while the operating theatre(OT) was almost free of microbial burden. The bacteria isolates were Staphylococcus aureus, Klebsiellasp., Bacillus cereus, Bacillus subtilis, Streptococcus pyogenes andSerratia marscenceswhile the fungi isolates includedAspergillus flavus, Penicilliumsp.,Fusariumsp.,Candida albicansandAlternariasp.Staphylococcus aureuswas the predominantly isolated bacterium whilePenicilliumsp. was the most isolated fungus.Conclusions:Though most of the microbial isolates were potential and or opportunistic pathogens, there was no correlation between the isolates in this study and the surveillance report of nosocomial infection during the period of study, hence the contribution of the indoor air cannot be established. From the reduction noticed in the morning samples, stringent measures such as proper disinfection and regular cleaning, restriction of patient relatives' movement in and out of the wards/units need to be enforced so as to improve the quality of indoor air of our hospital wards/units.展开更多
In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine ...In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution.展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no...This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.展开更多
A great concern for the modern distribution grid is how well it can withstand and respond to adverse conditions. One way that utilities are addressing this issue is by adding redundancy to their systems. Likewise, dis...A great concern for the modern distribution grid is how well it can withstand and respond to adverse conditions. One way that utilities are addressing this issue is by adding redundancy to their systems. Likewise, distributed generation (DG) is becoming an increasingly popular asset at the distribution level and the idea of microgrids operating as standalone systems apart from the bulk electric grid is quickly becoming a reality. This allows for greater flexibility as systems can now take on exponentially more configurations than the radial, one-way distribution systems of the past. These added capabilities, however, make the system reconfiguration with a much more complex problem causing utilities to question if they are operating their distribution systems optimally. In addition, tools like Supervisory Control and Data Acquisition (SCADA) and Distribution Automation (DA) allow for systems to be reconfigured faster than humans can make decisions on how to reconfigure them. As a result, this paper seeks to develop an automated partitioning scheme for distribution systems that can respond to varying system conditions while ensuring a variety of operational constraints on the final configuration. It uses linear programming and graph theory. Power flow is calculated externally to the LP and a feedback loop is used to recalculate the solution if a violation is found. Application to test systems shows that it can reconfigure systems containing any number of loops resulting in a radial configuration. It can connect multiple sources to a single microgrid if more capacity is needed to supply the microgrid’s load.展开更多
Because of the multiple problems on high energy consumption and unbalanced thermal comfort caused by the traditional ventilation system,a new concept of ventilation-stratum ventilation has been proposed,which sends th...Because of the multiple problems on high energy consumption and unbalanced thermal comfort caused by the traditional ventilation system,a new concept of ventilation-stratum ventilation has been proposed,which sends the fresh air to the breathing zone directly.In this paper,the local air distributions of the displacement ventilation and the stratum ventilation in a model office were measured.The air ages in the breathing zone for the displacement ventilation and stratum ventilation were compared with the tracer gas concentration decay method.The decay curves of tracer gas concentration for these two ventilation systems in the breathing zone were obtained,and the air ages were calculated.The experimental results show that the stratum ventilation system can offer lower air age for four mechanically ventilated cases in the breathing zone,and it can also provide better thermal comfort,which renews the air of breathing zone more quickly and reduces the energy consumption in some degree.The experimental investigation provides a theoretical basis for the application of stratum ventilation system.展开更多
Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its bui...Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its buildup. Ventilation was not initially recognized as an essential factor to thermal dispersion. However, as electronic circuit-boards continued to heat up, circuit failure became a problem, forcing the inclusion of miniaturized high speed fans. Later, heat sinks with fins and quiet fans were incorporated in most manufactured circuits. Now heat sinks come in the form of a fan with fans made to function as fins to disperse heat. Heat sinks absorb and radiate excess heat from circuit-boards in order to prolong the circuit’s life span. The higher the thermal conductivity of the material used the more efficient and effective the heat sink is. This paper is an attempt to theoretically design a heat sink with a temperature gradient lower than that of the circuit board’s excess heat.展开更多
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c...A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.展开更多
Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptio...Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptions of the Chapman-Richards growth function, constant mortality and recruitment into the mathematical form of the distribution. Therefore, unlike 'assumed' distribution models, it is intrinsically linked with the underlying vital rates for the forest area under consideration. Methods: It is shown that the Chapman-Richards distribution can be recast as a subset of the generalized beta distribution of the first kind, a rich family of assumed probability distribution models with known properties. These known properties for the generalized beta are then immediately available for the Chapman-Richards distribution, such as the form of the compatible basal area-size distribution. A simple two-stage procedure is proposed for the estimation of the model parameters and simulation experiments are conducted to validate the procedure for four different possible distribution shapes. Results: The simulations explore the efficacy of the two-stage estimation procedure;these cover the estimation of the growth equation and mortality-recruitment derives from the equilibrium assumption. The parameter estimates are shown to depend on both the sample size and the amount of noise imparted to the synthetic measurements. The results vary somewhat by distribution shape, with the smaller, noisier samples providing less reliable estimates of the vital rates and final distribution forms. Conclusions: The Chapman-Richards distribution in its original form, or recast as a generalized beta form, presents a potentially useful model integrating vital rates and stand diameters into a flexible family of resultant distributions shapes. The data requirements are modest, and parameter estimation is straightforward provided the minimal recommended sample sizes are obtained.展开更多
This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizin...This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizing monthly energy consumption data of the entire year as the analysis object,this paper identifies data distribution,verifies distribution characteristics and analyzes distribution probability density for the issue of running time distribution ratio of air conditioning system in part load zones in the whole operation period,thus providing a basic calculation basis for an overall analysis of energy efficiency of air conditioning system. In view of the general survey of public building energy consumption carried by the government of Chongqing,this paper takes the governmental office building as an example,the part load ratio coefficient corresponding to practical running of air conditioning system of governmental office building in Chongqing is obtained by utilizing the above probability analysis and the solving method of probability density function. By utilizing the ratio coefficient obtained using this method,the part load coefficient with any running ratio of air conditioning system can be obtained according to the requirement of analysis,which can be used in any load ratio for analyzing running energy efficiency of air conditioning system.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Saharan dust represents more than 50%of the total desert dust emitted around the globe and its radiative effect significantly affects the atmospheric circulation at a continental scale.Previous studies on dust vertica...Saharan dust represents more than 50%of the total desert dust emitted around the globe and its radiative effect significantly affects the atmospheric circulation at a continental scale.Previous studies on dust vertical distribution and the Saharan Air Layer(SAL)showed some shortcomings that could be attributed to imperfect representation of the effects of deep convection and scavenging.The authors investigate here the role of deep convective transport and scavenging on the vertical distribution of mineral dust over Western Africa.Using multi-year(2006-2010)simulations performed with the variable-resolution(zoomed)version of the LMDZ climate model.Simulations are compared with aerosol amounts recorded by the Aerosol Robotic Network(AERONET)and with vertical profiles of the Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP)measurements.LMDZ allows a thorough examination of the respective roles of deep convective transport,convective and stratiform scavenging,boundary layer transport,and advection processes on the vertical mineral dust distribution over Western Africa.The comparison of simulated dust Aerosol Optical Depth(AOD)and distribution with measurements suggest that scavenging in deep convection and subsequent re-evaporation of dusty rainfall in the lower troposphere are critical processes for explaining the vertical distribution of desert dust.These processes play a key role in maintaining a well-defined dust layer with a sharp transition at the top of the SAL and in establishing the seasonal cycle of dust distribution.This vertical distribution is further reshaped offshore in the Inter-Tropical Convergence Zone(ITCZ)over the Atlantic Ocean by marine boundary layer turbulent and convective transport and wet deposition at the surface.展开更多
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘By conducting experimental measurements and numerical simulations of air distribution and microorganism pollutant distribution in the auditorium and game area in a gymnasium,pollutant dispersion control and indoor air quality improvement methods were put forward. The results show that the fungi and bacteria concentration levels are less than the magnitude of 103 CFU (colony-forming units) which meets the requirements of indoor air quality standard. The numerical simulation results quantitatively agree with the experimental data while some differences between theoretical data and experimental data exist in air distributions. People number in gymnasium plays an important role in affecting indoor air quality and the environmental parameters attained the standard.
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.
基金the National Natural Science Foundation of China (No.51774283)Jiangsu Planned Projects for Postdoctoral Research Funds (1301030C) for the financial supports
文摘Mercury emitted from direct combustion of high-mercury coal does great harm to the environment. To make good use of high-mercury coal, it is necessary to study the occurrence characteristics of mercury in coal and high-efficient methods of mercury removal. In this paper, high-mercury coal of Guizhou Province of China was taken as an object to study the nature of mercury in coal and the rule of mercury removal by dry preparation method. Mercury mainly distributes in the medium and high density fractions, and has a good affinity with silicon, aluminum, iron, titanium, potassium, calcium, zinc, sodium and magnesium. It exists in minerals formed by these elements and presents significant correlation with ash in coal. After the high-mercury coal is separated by air dense medium fluidized bed, mercury content of clean coal is reduced to 1/10 of raw coal, while mercury content of gangue is increased to 3 times that of raw coal. This indicates that mercury in raw coal is rejected greatly by ADMFB and enriched in highdensity fractions. The rates of ash removal and mercury removal decrease with the density and present a very high correlation.
文摘In this paper we consider the arrival process of a multiserver queue governed by a discrete autoregressive process of order 1 [DAR(1)] with Quasi-Negative Binomial Distribution-II as the marginal distribution. This discrete time multiserver queueing system with autoregressive arrivals is more suitable for modeling the Asynchronous Transfer Mode(ATM) multiplexer queue with Variable Bit Rate (VBR) coded teleconference traffic. DAR(1) is described by a few parameters and it is easy to match the probability distribution and the decay rate of the autocorrelation function with those of measured real traffic. For this queueing system we obtained the stationary distribution of the system size and the waiting time distribution of an arbitrary packet with the help of matrix analytic methods and the theory of Markov regenerative processes. Also we consider negative binomial distribution, generalized Poisson distribution, Borel-Tanner distribution defined by Frank and Melvin(1960) and zero truncated generalized Poisson distribution as the special cases of Quasi-Negative Binomial Distribution-II. Finally, we developed computer programmes for the simulation and empirical study of the effect of autocorrelation function of input traffic on the stationary distribution of the system size as well as waiting time of an arbitrary packet. The model is applied to a real data of number of customers waiting for checkout in an airport and it is established that the model well suits this data.
基金supported by the grant RTI2018-095925-A-100,“Interactions among soil microorganisms as a tool for the sustainability of the resistance of rootstocks fruit trees against plant-parasitic nematodes”funded by Ministry of Science and Innovation(MCIN)and by European Regional Development Fund(ERDF)“A way of making Europe”The first author is a recipient of grant(PRE2019-090206)funded by European Social Fund(ESF)“Investing in your future”。
文摘A wide survey was conducted to study plant-parasitic nematodes(PPNs)associated with Prunus groves in Spain.This research aimed to determine the prevalence and distribution of PPNs in Prunus groves,as well as the influence of explanatory variables describing soil,climate and agricultural management in structuring the variation of PPNs community composition.A total of 218 sampling sites were surveyed and 84 PPN species belonging to 32 genera were identified based of an integrative taxonomic approach.PPN species considered as potential limiting factors in Prunus production,such as Meloidogyne arenaria,M.incognita,M.javanica,Pratylenchus penetrans and P.vulnus,were identified in this survey.Seven soil physico-chemical(C,Mg,N,Na,OM,P,pH and clay,loamy sand and sandy loam texture classes),four climate(Bio04,Bio05,Bio13 and Bio14)and four agricultural management variables(grove-use history less than 10 years,irrigation,apricot seedling rootstock,and Montclar rootstock)were identified as the most influential variables driving spatial patterns of PPNs communities.In particular,younger plantations showed higher values for species richness and diversity indices than groves cultivated for more than 20 years with Prunus spp.Our study increases the knowledge of the distribution and prevalence of PPNs associated with Prunus rhizosphere,as well as on the influence of explanatory variables driving the spatial structure PPNs communities,which has important implications for the successful design of sustainable management strategies in the future in this agricultural system.
文摘Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.
文摘Objective:To investigate the quality of indoor air of different wards and units of Olabisi Onabanjo University Teaching Hospital, Sagamu, to ascertain their contribution to infection rate in the hospital.Methods:The microbial quality of indoor air of nine wards/units of Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria was conducted. Sedimentation technique using open Petri-dishes containing different culture media was employed and samplings were done twice daily, one in the morning shortly after cleaning and before influx of people/patients into the wards/units and the other in the evening when a lot of activities would have taken place in these wards. Isolates were identified according to standard methods.Results:Results showed that there was a statistically significant difference(氈2= 6.0167) in the bacteria population of the different sampling time whereas it was not so for fungi population(氈2= 0.2857). Male medical ward(MMW) and male surgical general(MSG) recorded the highest bacterial and fungal growth while the operating theatre(OT) was almost free of microbial burden. The bacteria isolates were Staphylococcus aureus, Klebsiellasp., Bacillus cereus, Bacillus subtilis, Streptococcus pyogenes andSerratia marscenceswhile the fungi isolates includedAspergillus flavus, Penicilliumsp.,Fusariumsp.,Candida albicansandAlternariasp.Staphylococcus aureuswas the predominantly isolated bacterium whilePenicilliumsp. was the most isolated fungus.Conclusions:Though most of the microbial isolates were potential and or opportunistic pathogens, there was no correlation between the isolates in this study and the surveillance report of nosocomial infection during the period of study, hence the contribution of the indoor air cannot be established. From the reduction noticed in the morning samples, stringent measures such as proper disinfection and regular cleaning, restriction of patient relatives' movement in and out of the wards/units need to be enforced so as to improve the quality of indoor air of our hospital wards/units.
基金National Key Research and Development Program of China(No.2018YFC0705305)。
文摘In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution.
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.
文摘This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.
文摘A great concern for the modern distribution grid is how well it can withstand and respond to adverse conditions. One way that utilities are addressing this issue is by adding redundancy to their systems. Likewise, distributed generation (DG) is becoming an increasingly popular asset at the distribution level and the idea of microgrids operating as standalone systems apart from the bulk electric grid is quickly becoming a reality. This allows for greater flexibility as systems can now take on exponentially more configurations than the radial, one-way distribution systems of the past. These added capabilities, however, make the system reconfiguration with a much more complex problem causing utilities to question if they are operating their distribution systems optimally. In addition, tools like Supervisory Control and Data Acquisition (SCADA) and Distribution Automation (DA) allow for systems to be reconfigured faster than humans can make decisions on how to reconfigure them. As a result, this paper seeks to develop an automated partitioning scheme for distribution systems that can respond to varying system conditions while ensuring a variety of operational constraints on the final configuration. It uses linear programming and graph theory. Power flow is calculated externally to the LP and a feedback loop is used to recalculate the solution if a violation is found. Application to test systems shows that it can reconfigure systems containing any number of loops resulting in a radial configuration. It can connect multiple sources to a single microgrid if more capacity is needed to supply the microgrid’s load.
文摘Because of the multiple problems on high energy consumption and unbalanced thermal comfort caused by the traditional ventilation system,a new concept of ventilation-stratum ventilation has been proposed,which sends the fresh air to the breathing zone directly.In this paper,the local air distributions of the displacement ventilation and the stratum ventilation in a model office were measured.The air ages in the breathing zone for the displacement ventilation and stratum ventilation were compared with the tracer gas concentration decay method.The decay curves of tracer gas concentration for these two ventilation systems in the breathing zone were obtained,and the air ages were calculated.The experimental results show that the stratum ventilation system can offer lower air age for four mechanically ventilated cases in the breathing zone,and it can also provide better thermal comfort,which renews the air of breathing zone more quickly and reduces the energy consumption in some degree.The experimental investigation provides a theoretical basis for the application of stratum ventilation system.
文摘Heat sinks were invented to absorb heat from an electronic circuit conduct, and then to dissipate or radiate this heat to the surrounding supposedly, ventilated space, at a rate equal to or faster than that of its buildup. Ventilation was not initially recognized as an essential factor to thermal dispersion. However, as electronic circuit-boards continued to heat up, circuit failure became a problem, forcing the inclusion of miniaturized high speed fans. Later, heat sinks with fins and quiet fans were incorporated in most manufactured circuits. Now heat sinks come in the form of a fan with fans made to function as fins to disperse heat. Heat sinks absorb and radiate excess heat from circuit-boards in order to prolong the circuit’s life span. The higher the thermal conductivity of the material used the more efficient and effective the heat sink is. This paper is an attempt to theoretically design a heat sink with a temperature gradient lower than that of the circuit board’s excess heat.
文摘A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.
基金partially supported by the USDA National Institute of Food and Agriculture,Mc Intire Stennis Project OKL0 3063the Division of Agricultural Sciences and Natural Resources at Oklahoma State Universityprovided by the USDA Forest Service,Research Joint Venture 17-JV-11242306045,Old-Growth Forest Dynamics and Structure,to Mark Ducey
文摘Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptions of the Chapman-Richards growth function, constant mortality and recruitment into the mathematical form of the distribution. Therefore, unlike 'assumed' distribution models, it is intrinsically linked with the underlying vital rates for the forest area under consideration. Methods: It is shown that the Chapman-Richards distribution can be recast as a subset of the generalized beta distribution of the first kind, a rich family of assumed probability distribution models with known properties. These known properties for the generalized beta are then immediately available for the Chapman-Richards distribution, such as the form of the compatible basal area-size distribution. A simple two-stage procedure is proposed for the estimation of the model parameters and simulation experiments are conducted to validate the procedure for four different possible distribution shapes. Results: The simulations explore the efficacy of the two-stage estimation procedure;these cover the estimation of the growth equation and mortality-recruitment derives from the equilibrium assumption. The parameter estimates are shown to depend on both the sample size and the amount of noise imparted to the synthetic measurements. The results vary somewhat by distribution shape, with the smaller, noisier samples providing less reliable estimates of the vital rates and final distribution forms. Conclusions: The Chapman-Richards distribution in its original form, or recast as a generalized beta form, presents a potentially useful model integrating vital rates and stand diameters into a flexible family of resultant distributions shapes. The data requirements are modest, and parameter estimation is straightforward provided the minimal recommended sample sizes are obtained.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of ChinaProject(CSTC,2008AB7110) supported by the Key Technologies R & D Programme of Chongqing,China
文摘This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizing monthly energy consumption data of the entire year as the analysis object,this paper identifies data distribution,verifies distribution characteristics and analyzes distribution probability density for the issue of running time distribution ratio of air conditioning system in part load zones in the whole operation period,thus providing a basic calculation basis for an overall analysis of energy efficiency of air conditioning system. In view of the general survey of public building energy consumption carried by the government of Chongqing,this paper takes the governmental office building as an example,the part load ratio coefficient corresponding to practical running of air conditioning system of governmental office building in Chongqing is obtained by utilizing the above probability analysis and the solving method of probability density function. By utilizing the ratio coefficient obtained using this method,the part load coefficient with any running ratio of air conditioning system can be obtained according to the requirement of analysis,which can be used in any load ratio for analyzing running energy efficiency of air conditioning system.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
基金The authors wish to thank the Ecosystem Approach to the management of fisheries and the marine environment in the West African Waters(AWA)project.They also acknowledge support from the international joint laboratory ECLAIRS.The Laboratoire de Météorologie Dynamique(LMD)and the Global Challenges Research Fund(GCRF)African Science for Weather Information and Techniques(SWIFT)Programme.NASA,CNES,and ICARE are acknowledged for providing access to CALIOP and Sun photometer AERONET data.
文摘Saharan dust represents more than 50%of the total desert dust emitted around the globe and its radiative effect significantly affects the atmospheric circulation at a continental scale.Previous studies on dust vertical distribution and the Saharan Air Layer(SAL)showed some shortcomings that could be attributed to imperfect representation of the effects of deep convection and scavenging.The authors investigate here the role of deep convective transport and scavenging on the vertical distribution of mineral dust over Western Africa.Using multi-year(2006-2010)simulations performed with the variable-resolution(zoomed)version of the LMDZ climate model.Simulations are compared with aerosol amounts recorded by the Aerosol Robotic Network(AERONET)and with vertical profiles of the Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP)measurements.LMDZ allows a thorough examination of the respective roles of deep convective transport,convective and stratiform scavenging,boundary layer transport,and advection processes on the vertical mineral dust distribution over Western Africa.The comparison of simulated dust Aerosol Optical Depth(AOD)and distribution with measurements suggest that scavenging in deep convection and subsequent re-evaporation of dusty rainfall in the lower troposphere are critical processes for explaining the vertical distribution of desert dust.These processes play a key role in maintaining a well-defined dust layer with a sharp transition at the top of the SAL and in establishing the seasonal cycle of dust distribution.This vertical distribution is further reshaped offshore in the Inter-Tropical Convergence Zone(ITCZ)over the Atlantic Ocean by marine boundary layer turbulent and convective transport and wet deposition at the surface.