In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ...In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ...Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.展开更多
We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We ...We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.展开更多
This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quick...This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.展开更多
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal...Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.展开更多
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ...The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.展开更多
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st...This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .展开更多
In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a m...In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a multiply connected unbounded domain D, the above boundary value problem will be called Problem A. If the complex Equation (0.1) satisfies the conditions similar to Condition C of (1.1), and the boundary condition (0.2) satisfies the conditions similar to (1.5), then we can obtain approximate solutions of the boundary value problems (0.1) and (0.2). Moreover the error estimates of approximate solutions for the boundary value problem is also given. The boundary value problem possesses many applications in mechanics and physics etc., for instance from (5.114) and (5.115), Chapter VI, [1], we see that Problem A of (0.1) possesses the important application to the shell and elasticity.展开更多
During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained thr...During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained through mathematic analysis and 3-D optimization calculation. In the close region of relative radius of the core flow, the continuity of deviation is determined with the limit methods. By analysis, the results indicate that the deviation in the area around the discontinuous nodes is very large; the deviation is the function of fluid parameters, approximate solution parameters and the relative radius of the core flow. While the fluid parameters keep certain, the 3-D figures of the deviation are drawn. The slice plane is used to seek the extremums of multi-peaks surface; The optimized parameters of approximate formula make the approximate formula in the regions of the certain deviation. The available area of relative radius of the core flow increases by 43.2%. It is more valuable for the calculation of flow resistance in pipe transportation.展开更多
This study tested a novel method designed to provide useful information for medical diagnosis and treatment. We measured electroencephalography (EEG) during a test of eye opening and closing, a common test in routine ...This study tested a novel method designed to provide useful information for medical diagnosis and treatment. We measured electroencephalography (EEG) during a test of eye opening and closing, a common test in routine EEG examination. This test is mainly used for measuring the degree of alpha blocking and sensitivity during eyes opening and closing. However, because these factors depend on the subject’s awareness, drowsiness can interfere with accurate diagnosis. We sought to determine the optimal EEG frequency band and optimal brain region for distinguishing healthy individuals from patients suffering from several neurophysiological diseases (including dementia, cerebrovascular disorder, schizophrenia, alcoholism, and epilepsy) while fully awake, and while in an early drowsy state. We tested four groups of subjects (awake healthy subjects, drowsy healthy subjects, awake patients and drowsy patients). The complexity of EEG band frequencies over five lobes in the human brain was analyzed using wavelet-based approximate entropy (ApEn). Two-way analysis of variance tested the effects of the two factors of interest (subjects’ health state, and subjects’ wakefulness state) on five different lobes of the brain during eyes opening and closing. The complexity of the theta and delta bands over frontal and central regions, respectively, was significantly greater in the healthy state during eyes opening. In contrast, patients exhibited increased complexity of gamma band activity over the temporal region only, during eyes-close. The early drowsy state and wakefulness state increased the complexity of theta band activity over the temporal region only during eyes-close and eyes-open states respectively, and this change was significantly greater in control subjects compared with patients. We propose that this method may be useful in routine EEG examination, to aid medical doctors and clinicians in distinguishing healthy individuals from patients, regardless of whether the subject is fully awake or in the early stages of drowsiness.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
In this paper, approximate controllability of fractional order retarded semilinear systems is studied when the nonlinear term satisfies the newly formulated bounded integral contractor-type conditions. We have shown t...In this paper, approximate controllability of fractional order retarded semilinear systems is studied when the nonlinear term satisfies the newly formulated bounded integral contractor-type conditions. We have shown the existence and uniqueness of the mild solution for the fractional order retarded semilinear systems using an iterative procedure approach. Finally, we obtain the approximate controllability results of the system under simple condition.展开更多
In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that ...In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.展开更多
This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layer...This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.展开更多
This paper presents a high efficiency spread spectrum scheme using approximate orthogonal complex (AOC) sequences. In this scheme, the 64 AOC sequences picked up from 84 complex sequences space are employed for spread...This paper presents a high efficiency spread spectrum scheme using approximate orthogonal complex (AOC) sequences. In this scheme, the 64 AOC sequences picked up from 84 complex sequences space are employed for spreading spectrum. In modulation, 6 input bits is used to select one AOC sequence, and the selected sequence is then phase-rotated by another 2 input bits. In demodulator, a complex correlator detects the transmitted AOC sequence. Simulation results show that the proposed scheme has better BER performance than the existing complementary code keying (CCK) modulation scheme. For AOC, additional processing gain of 1.79dB can be obtained when the sequence length is 8.展开更多
Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also u...Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also used in several epilepsy detection methods. In this study, a wavelet-approximate entropy method is ap-plied for epilepsy detection from EEG signal. First wavelet analysis is applied for decomposing the EEG signal to delta, theta, alpha, beta and gamma sub- ands. Then approximate entropy that is a chaotic measure and can be used in estimation complexity of time series applied to EEG and its sub-bands. We used this method for separating 5 group EEG signals (healthy with opened eye, healthy with closed eye, interictal in none focal zone, interictal in focal zone and seizure onset signals). For evaluating separation ability of this method we used t-student statistical analysis. For all pair of groups we have 99.99% separation probability in at least 2 bands of these 6 bands (EEG and its 5 sub-bands). In comparing some groups we have over 99.98% for EEG and all its sub-bands.展开更多
A simplified approximate model considering rod/target material's compressibility is proposed for hypervelocity penetration.We study the effect of shockwaves on hypervelocity penetration whenever the compressibilit...A simplified approximate model considering rod/target material's compressibility is proposed for hypervelocity penetration.We study the effect of shockwaves on hypervelocity penetration whenever the compressibility of the rod is much larger,analogously,and much less than that of the target,respectively.The results show that the effect of shockwaves is insignificant up to 12 km/s,so the shockwave is neglected in the present approximate model.The Murnaghan equation of state is adopted to simulate the material behaviors in penetration and its validity is proved.The approximate model is finally reduced to an equation depending only on the penetration velocity and a simple approximate solution is achieved.The solution of the approximate model is in agreement with the result of the complete compressible model.In addition,the effect of shockwaves on hypervelocity penetration is shown to weaken material's compressibility and reduce the interface pressure of the rod/target,and thus the striking/protective performance of the rod/target is weakened,respectively.We also conduct an error analysis of the interface pressure and penetration efficiency.With a velocity change of 1.6 times the initial sound speed for the rod or target,the error of the approximate model is very small.For metallic rod-target combinations,the approximate model is applicable even at an impact velocity of 12 km/s.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
文摘In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
文摘Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.
文摘We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.
文摘This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.
文摘Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.
基金financially supported by the National Natural Science Foundation of China,No.61263011,81000554Program in Sun Yat-sen University supported by Fundamental Research Funds for the Central Universities,No.11ykpy07+1 种基金Natural Science Foundation of Guangdong Province,No.S2011010005309Innovation Fund of Xinjiang Medical University,No.XJC201209
文摘The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.
文摘This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .
文摘In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a multiply connected unbounded domain D, the above boundary value problem will be called Problem A. If the complex Equation (0.1) satisfies the conditions similar to Condition C of (1.1), and the boundary condition (0.2) satisfies the conditions similar to (1.5), then we can obtain approximate solutions of the boundary value problems (0.1) and (0.2). Moreover the error estimates of approximate solutions for the boundary value problem is also given. The boundary value problem possesses many applications in mechanics and physics etc., for instance from (5.114) and (5.115), Chapter VI, [1], we see that Problem A of (0.1) possesses the important application to the shell and elasticity.
文摘During calculating the fluid resistence with Herschel-Bulkley formula, the deviation is very large in some regions. In order to decrease the deviation, the optimized parameters of approximate solution are obtained through mathematic analysis and 3-D optimization calculation. In the close region of relative radius of the core flow, the continuity of deviation is determined with the limit methods. By analysis, the results indicate that the deviation in the area around the discontinuous nodes is very large; the deviation is the function of fluid parameters, approximate solution parameters and the relative radius of the core flow. While the fluid parameters keep certain, the 3-D figures of the deviation are drawn. The slice plane is used to seek the extremums of multi-peaks surface; The optimized parameters of approximate formula make the approximate formula in the regions of the certain deviation. The available area of relative radius of the core flow increases by 43.2%. It is more valuable for the calculation of flow resistance in pipe transportation.
文摘This study tested a novel method designed to provide useful information for medical diagnosis and treatment. We measured electroencephalography (EEG) during a test of eye opening and closing, a common test in routine EEG examination. This test is mainly used for measuring the degree of alpha blocking and sensitivity during eyes opening and closing. However, because these factors depend on the subject’s awareness, drowsiness can interfere with accurate diagnosis. We sought to determine the optimal EEG frequency band and optimal brain region for distinguishing healthy individuals from patients suffering from several neurophysiological diseases (including dementia, cerebrovascular disorder, schizophrenia, alcoholism, and epilepsy) while fully awake, and while in an early drowsy state. We tested four groups of subjects (awake healthy subjects, drowsy healthy subjects, awake patients and drowsy patients). The complexity of EEG band frequencies over five lobes in the human brain was analyzed using wavelet-based approximate entropy (ApEn). Two-way analysis of variance tested the effects of the two factors of interest (subjects’ health state, and subjects’ wakefulness state) on five different lobes of the brain during eyes opening and closing. The complexity of the theta and delta bands over frontal and central regions, respectively, was significantly greater in the healthy state during eyes opening. In contrast, patients exhibited increased complexity of gamma band activity over the temporal region only, during eyes-close. The early drowsy state and wakefulness state increased the complexity of theta band activity over the temporal region only during eyes-close and eyes-open states respectively, and this change was significantly greater in control subjects compared with patients. We propose that this method may be useful in routine EEG examination, to aid medical doctors and clinicians in distinguishing healthy individuals from patients, regardless of whether the subject is fully awake or in the early stages of drowsiness.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
文摘In this paper, approximate controllability of fractional order retarded semilinear systems is studied when the nonlinear term satisfies the newly formulated bounded integral contractor-type conditions. We have shown the existence and uniqueness of the mild solution for the fractional order retarded semilinear systems using an iterative procedure approach. Finally, we obtain the approximate controllability results of the system under simple condition.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072242)the Key Scientific Studies Program of Hebei Province Higher Education Institute,China(Grant No.ZD2018301)Cangzhou National Science Foundation,China(Grant No.177000001)
文摘In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.
文摘This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.
文摘This paper presents a high efficiency spread spectrum scheme using approximate orthogonal complex (AOC) sequences. In this scheme, the 64 AOC sequences picked up from 84 complex sequences space are employed for spreading spectrum. In modulation, 6 input bits is used to select one AOC sequence, and the selected sequence is then phase-rotated by another 2 input bits. In demodulator, a complex correlator detects the transmitted AOC sequence. Simulation results show that the proposed scheme has better BER performance than the existing complementary code keying (CCK) modulation scheme. For AOC, additional processing gain of 1.79dB can be obtained when the sequence length is 8.
文摘Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also used in several epilepsy detection methods. In this study, a wavelet-approximate entropy method is ap-plied for epilepsy detection from EEG signal. First wavelet analysis is applied for decomposing the EEG signal to delta, theta, alpha, beta and gamma sub- ands. Then approximate entropy that is a chaotic measure and can be used in estimation complexity of time series applied to EEG and its sub-bands. We used this method for separating 5 group EEG signals (healthy with opened eye, healthy with closed eye, interictal in none focal zone, interictal in focal zone and seizure onset signals). For evaluating separation ability of this method we used t-student statistical analysis. For all pair of groups we have 99.99% separation probability in at least 2 bands of these 6 bands (EEG and its 5 sub-bands). In comparing some groups we have over 99.98% for EEG and all its sub-bands.
基金The work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(11521202)the National Outstanding Young Scientist Foundation of China(11225213)the Key Subject'Computational Solid Mechanics'of China Academy of Engineering Physics.
文摘A simplified approximate model considering rod/target material's compressibility is proposed for hypervelocity penetration.We study the effect of shockwaves on hypervelocity penetration whenever the compressibility of the rod is much larger,analogously,and much less than that of the target,respectively.The results show that the effect of shockwaves is insignificant up to 12 km/s,so the shockwave is neglected in the present approximate model.The Murnaghan equation of state is adopted to simulate the material behaviors in penetration and its validity is proved.The approximate model is finally reduced to an equation depending only on the penetration velocity and a simple approximate solution is achieved.The solution of the approximate model is in agreement with the result of the complete compressible model.In addition,the effect of shockwaves on hypervelocity penetration is shown to weaken material's compressibility and reduce the interface pressure of the rod/target,and thus the striking/protective performance of the rod/target is weakened,respectively.We also conduct an error analysis of the interface pressure and penetration efficiency.With a velocity change of 1.6 times the initial sound speed for the rod or target,the error of the approximate model is very small.For metallic rod-target combinations,the approximate model is applicable even at an impact velocity of 12 km/s.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.