Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi...Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.展开更多
In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts ...In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen...Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and ...The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment.展开更多
In recent years,Artificial Intelligence(AI)has revolutionized people’s lives.AI has long made breakthrough progress in the field of surgery.However,the research on the application of AI in orthopedics is still in the...In recent years,Artificial Intelligence(AI)has revolutionized people’s lives.AI has long made breakthrough progress in the field of surgery.However,the research on the application of AI in orthopedics is still in the exploratory stage.The paper first introduces the background of AI and orthopedic diseases,addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases,draws out the advantages of deep learning and machine learning in image detection,and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years,describing the contributions,strengths and weaknesses,and the direction of the future improvements that can be made in each study.Next,the paper also introduces the difficulties of traditional orthopedic surgery and the roles played by AI in preoperative,intraoperative,and postoperative orthopedic surgery,scientifically discussing the advantages and prospects of AI in orthopedic surgery.Finally,the article discusses the limitations of current research and technology in clinical applications,proposes solutions to the problems,and summarizes and outlines possible future research directions.The main objective of this review is to inform future research and development of AI in orthopedics.展开更多
Artificial intelligence (AI) is revolutionizing the healthcare sector worldwide. In Morocco, several AI applications are being deployed in public and private healthcare establishments, improving appointment management...Artificial intelligence (AI) is revolutionizing the healthcare sector worldwide. In Morocco, several AI applications are being deployed in public and private healthcare establishments, improving appointment management, surgical operations, diagnostics, patient record tracking, biology and radiology, and OR organization. This article explores the main AI applications used in the Moroccan healthcare sector, their frequency of use, the types of establishments adopting them, as well as the main functionalities of each application and its contribution to the sector. The aim of this study is to analyze the impact of the main AI applications on quality of care and process efficiency in Moroccan healthcare facilities. This research focuses on several fundamental questions: Which AI applications are most frequently used? What types of establishments are adopting these technologies, and for which specific functionalities? What are the benefits and challenges of integrating AI into the Moroccan healthcare system, particularly in terms of territorial distribution and accessibility? The methodology is based on a quantitative analysis of data collected from selected healthcare establishments, combined with studies of reports from public health authorities and a sweep of their websites. The results show that 45% of hospitals use AI systems for appointment scheduling and 30% for medical diagnosis. The use of surgical robots, such as the Da Vinci system, increased by 30% between 2020 and 2024. Comparisons with other emerging countries highlight Morocco’s acceptable advances, while underlining the challenges, particularly in terms of the territorial distribution of these technological infrastructures generally centralized in the country’s major cities.展开更多
The sphere of artificial intelligence(AI)is ever expanding.Applications for clinical practice have been emerging over recent years.Although its uptake has been most prominent in endoscopy,this represents only one aspe...The sphere of artificial intelligence(AI)is ever expanding.Applications for clinical practice have been emerging over recent years.Although its uptake has been most prominent in endoscopy,this represents only one aspect of holistic patient care.There are a multitude of other potential avenues in which gastrointestinal care may be involved.We aim to review the role of AI in colorectal cancer as a whole.We performed broad scoping and focused searches of the applications of AI in the field of colorectal cancer.All trials including qualitative research were included from the year 2000 onwards.Studies were grouped into pre-operative,intra-operative and post-operative aspects.Preoperatively,the major use is with endoscopic recognition.Colonoscopy has embraced the use for human derived classifications such as Narrow-band Imaging International Colorectal Endoscopic,Japan Narrow-band Imaging Expert Team,Paris and Kudo.However,novel detection and diagnostic methods have arisen from advances in AI classification.Intra-operatively,adjuncts such as image enhanced identification of structures and assessment of perfusion have led to improvements in clinical outcomes.Post-operatively,monitoring and surveillance have taken strides with potential socioeconomic and environmental savings.The uses of AI within the umbrella of colorectal surgery are multiple.We have identified existing technologies which are already augmenting cancer care.The future applications are exciting and could at least match,if not surpass human standards.展开更多
The first ablation procedures for small hepatocellular carcinomas were percutaneous ethanol injection under ultrasound(US)guidance.Later,radiofrequency ablation was shown to achieve larger coagulation areas than percu...The first ablation procedures for small hepatocellular carcinomas were percutaneous ethanol injection under ultrasound(US)guidance.Later,radiofrequency ablation was shown to achieve larger coagulation areas than percutaneous ethanol injection and became the most used ablation technique worldwide.In the past decade,microwave ablation systems have achieved larger ablation areas than radiofrequency ablation,suggesting that the 3-cm barrier could be broken in the treatment of liver tumors.Likewise,US techniques to guide percutaneous ablation have seen important progress.Contrast-enhanced US(CEUS)can define and target the tumor better than US and can assess the size of the ablation area after the procedure,which allows immediate retreatment of the residual tumor foci.Furthermore,fusion imaging fuses real-time US images with computed tomography or magnetic resonance imaging with significant improvements in detecting and targeting lesions with low conspicuity on CEUS.Recently,software powered by artificial intelligence has been developed to allow three-dimensional segmentation and reconstruction of the anatomical structures,aiding in procedure planning,assessing ablation completeness,and targeting the residual viable foci with greater precision than CEUS.Hopefully,this could lead to the ablation of tumors up to 5-7 cm in size.展开更多
Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser s...Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser six cognitive functions and provide new perspectives on which a lot of extensions and particularlly flexible Lmser are proposed.Interestingly,either or two of these dualities actually takes an important role in recent models such as U-net,ResNet,and Dense Net.The second thread is about bidirectional learning principles unified by best yIng-yAng(IA)harmony in BYY system.After getting insights on deep bidirectional learning from a bird-viewing on existing typical learning principles from one or both of the inward and outward directions,maximum likelihood,variational principle,and several other learning principles are summarised as exemplars of the BYY learning,with new perspectives on advanced topics.The third thread further proceeds to deep bidirectional intelligence,driven by long term dynamics(LTD)for parameter learning and short term dynamics(STD)for image thinking and rational thinking in harmony.Image thinking deals with information flow of continuously valued arrays and especially image sequence,as if thinking was displayed in the real world,exemplified by the flow from inward encoding/cognition to outward reconstruction/transformation performed in Lmser learning and BYY learning.In contrast,rational thinking handles symbolic strings or discretely valued vectors,performing uncertainty reasoning and problem solving.In particular,a general thesis is proposed for bidirectional intelligence,featured by BYY intelligence potential theory(BYY-IPT)and nine essential dualities in architecture,fundamentals,and implementation,respectively.Then,problems of combinatorial solving and uncertainty reasoning are investigated from this BYY IPT perspective.First,variants and extensions are suggested for AlphaGoZero like searching tasks,such as traveling salesman problem(TSP)and attributed graph matching(AGM)that are turned into Go like problems with help of a feature enrichment technique.Second,reasoning activities are summarized under guidance of BYY IPT from the aspects of constraint satisfaction,uncertainty propagation,and path or tree searching.Particularly,causal potential theory is proposed for discovering causal direction,with two roads developed for its implementation.展开更多
MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gat...MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gather data.While providing more choices and more comprehensive picture of patients’ conditions to doctors and practitioners,these progresses also require more labor efforts to read,analyze,and make decisions based on those data.It is very difficult for the medical human resources to grow at a speed that matches such need for diagnosis-related expert knowledge.The shortage of expertise has caused long waiting time for check report and fatal misjudged diagnosis in public health system,and it will compromise our ability to move towards a more precise,more personalized and more efficient future of medicine.展开更多
The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected pr...The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected problems both of human origins in the universe and mankind’s digital future.And,besides,such an approach allows to deal with self-organising interconversions between the poles of the cardinal dual opposition of the Global Noosphere Brain and the Artificial General Intelligence.Herewith such phenomena of digital social life as Global Digitalisation,Digital Immortality,Mindcloning,and Technological Zombification being the constituents of Technological Singularity Concept,are rethought as paving the way for oncoming Posthuman Digital Era.This concept is evidently exemplified by a bifurcation resulting in two alternatives to be chosen by human beings,to wit,either to be undergone Mindcloning and become digitally immortal or being destroyed by powerful intelligent machines.The investigation in question is based on such a progressive methodology as the Law of Self-Organizing Ideals,as well as on the Method of Dual Oppositions.Rethinking interrelationships between the problem of a sense of social history and the meaning-of-life of local societies members which any intelligent machine is devoid of permits to substantiate specific regularities of Self-Transforming Homo Faber into Homo Digitalis and Technological Zombies ready to be transferred to posthuman cyberspace.展开更多
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili...Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.展开更多
Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative...Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative pain management is intractable not only because children cannot express their emotions accurately and objectively due to their inability to describe physiological characteristics of feeling which are different from those of adults,but also because there is a lack of effective and specific assessment tool for children.In addition,exposure to repeated painful stimuli early in life is known to have short and long-term adverse sequelae.The short-term sequelae can induce a series of neurological,endocrine,cardiovascular system stress related to psychological trauma,while long-term sequelae may alter brain maturation process,which can lead to impair neurodevelopmental,behavioral,and cognitive function.Children’s facial expressions largely reflect the degree of pain,which has led to the developing of a number of pain scoring tools that will help improve the quality of pain mana-gement in children if they are continually studied in depth.The artificial inte-lligence(AI)technology represented by machine learning has reached an unprecedented level in image processing of deep facial models through deep convolutional neural networks,which can effectively identify and systematically analyze various subtle features of children’s facial expressions.Based on the construction of a large database of images of facial expressions in children with perioperative pain,this study proposes to develop and apply automatic facial pain expression recognition software using AI technology.The study aims to improve the postoperative pain management for pediatric population and the short-term and long-term quality of life for pediatric patients after operational event.展开更多
Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in...Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media.For instance,using natural language processing(NLP)methods,social media can be leveraged to obtain crucial information on the present situation during disasters.In this work,tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model.This investigation employed sentiment analysis(SA)to determine the people’s expressed negative attitudes regarding the disaster.We apply a machine learning algorithm and evaluate the performance using the standard metrics,namely root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE).Our random forest(RF)classifier outperforms comparable works with an accuracy of 98.10%.In order to gain a competitive edge,the study shows how Twitter(now X)data and machine learning(ML)techniques can analyze public discourse and sentiments regarding disasters.It does this by comparing positive and negative comments in order to develop strategies to deal with public sentiments on disasters.展开更多
Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and pat...Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and patient-stay with sleep in unfamiliar environments.Current technologies have allowed various devices to diagnose sleep disorders at home.However,these devices are in various validation stages,with many already receiving approvals from competent authorities.This has captured vast patient-related physiologic data for advanced analytics using artificial intelligence through machine and deep learning applications.This is expected to be integrated with patients’Electronic Health Records and provide individualized prescriptive therapy for sleep disorders in the future.展开更多
Artificial intelligence (AI) has become increasingly important in geothermal exploration,significantly improving the efficiency of resource identification.This review examines current AI applications,focusing on the a...Artificial intelligence (AI) has become increasingly important in geothermal exploration,significantly improving the efficiency of resource identification.This review examines current AI applications,focusing on the algorithms used,the challenges addressed,and the opportunities created.In addition,the review highlights the growth of machine learning applications in geothermal exploration over the past decade,demonstrating how AI has improved the analysis of subsurface data to identify potential resources.AI techniques such as neural networks,support vector machines,and decision trees are used to estimate subsurface temperatures,predict rock and fluid properties,and identify optimal drilling locations.In particular,neural networks are the most widely used technique,further contributing to improved exploration efficiency.However,the widespread adoption of AI in geothermal exploration is hindered by challenges,such as data accessibility,data quality,and the need for tailored data science training for industry professionals.Furthermore,the review emphasizes the importance of data engineering methodologies,data scaling,and standardization to enable the development of accurate and generalizable AI models for geothermal exploration.It is concluded that the integration of AI into geothermal exploration holds great promise for accelerating the development of geothermal energy resources.By effectively addressing key challenges and leveraging AI technologies,the geothermal industry can unlock cost‐effective and sustainable power generation opportunities.展开更多
文摘Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.
基金Supported by Research Project of Postgraduate Education and Teaching Reform in Jilin Province in 2023(JJKH20230060YJG)Research Project of Teaching Reform of Vocational Education and Adult Education in Jilin Province(2022ZCY295)+5 种基金Scientific Research Project of Higher Education in Jilin Province in 2023(JGJX2023D200)Research Project of Teaching Reform of Higher Education in 2023(XJSX202301)Research Project of Teaching Reform of Higher Education in 2023(XJ202303)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ04)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ01)Provincial College Students Innovation and Entrepreneurship Project(S202310199042&S202310199043).
文摘In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
文摘Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金supported by theCONAHCYT(Consejo Nacional deHumanidades,Ciencias y Tecnologias).
文摘The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61861007 and 61640014in part by theGuizhou Province Science and Technology Planning Project ZK[2021]303+2 种基金in part by the Guizhou Province Science Technology Support Plan under Grants[2022]017,[2023]096 and[2022]264in part by the Guizhou Education Department Innovation Group Project under Grant KY[2021]012in part by the Talent Introduction Project of Guizhou University(2014)-08.
文摘In recent years,Artificial Intelligence(AI)has revolutionized people’s lives.AI has long made breakthrough progress in the field of surgery.However,the research on the application of AI in orthopedics is still in the exploratory stage.The paper first introduces the background of AI and orthopedic diseases,addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases,draws out the advantages of deep learning and machine learning in image detection,and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years,describing the contributions,strengths and weaknesses,and the direction of the future improvements that can be made in each study.Next,the paper also introduces the difficulties of traditional orthopedic surgery and the roles played by AI in preoperative,intraoperative,and postoperative orthopedic surgery,scientifically discussing the advantages and prospects of AI in orthopedic surgery.Finally,the article discusses the limitations of current research and technology in clinical applications,proposes solutions to the problems,and summarizes and outlines possible future research directions.The main objective of this review is to inform future research and development of AI in orthopedics.
文摘Artificial intelligence (AI) is revolutionizing the healthcare sector worldwide. In Morocco, several AI applications are being deployed in public and private healthcare establishments, improving appointment management, surgical operations, diagnostics, patient record tracking, biology and radiology, and OR organization. This article explores the main AI applications used in the Moroccan healthcare sector, their frequency of use, the types of establishments adopting them, as well as the main functionalities of each application and its contribution to the sector. The aim of this study is to analyze the impact of the main AI applications on quality of care and process efficiency in Moroccan healthcare facilities. This research focuses on several fundamental questions: Which AI applications are most frequently used? What types of establishments are adopting these technologies, and for which specific functionalities? What are the benefits and challenges of integrating AI into the Moroccan healthcare system, particularly in terms of territorial distribution and accessibility? The methodology is based on a quantitative analysis of data collected from selected healthcare establishments, combined with studies of reports from public health authorities and a sweep of their websites. The results show that 45% of hospitals use AI systems for appointment scheduling and 30% for medical diagnosis. The use of surgical robots, such as the Da Vinci system, increased by 30% between 2020 and 2024. Comparisons with other emerging countries highlight Morocco’s acceptable advances, while underlining the challenges, particularly in terms of the territorial distribution of these technological infrastructures generally centralized in the country’s major cities.
文摘The sphere of artificial intelligence(AI)is ever expanding.Applications for clinical practice have been emerging over recent years.Although its uptake has been most prominent in endoscopy,this represents only one aspect of holistic patient care.There are a multitude of other potential avenues in which gastrointestinal care may be involved.We aim to review the role of AI in colorectal cancer as a whole.We performed broad scoping and focused searches of the applications of AI in the field of colorectal cancer.All trials including qualitative research were included from the year 2000 onwards.Studies were grouped into pre-operative,intra-operative and post-operative aspects.Preoperatively,the major use is with endoscopic recognition.Colonoscopy has embraced the use for human derived classifications such as Narrow-band Imaging International Colorectal Endoscopic,Japan Narrow-band Imaging Expert Team,Paris and Kudo.However,novel detection and diagnostic methods have arisen from advances in AI classification.Intra-operatively,adjuncts such as image enhanced identification of structures and assessment of perfusion have led to improvements in clinical outcomes.Post-operatively,monitoring and surveillance have taken strides with potential socioeconomic and environmental savings.The uses of AI within the umbrella of colorectal surgery are multiple.We have identified existing technologies which are already augmenting cancer care.The future applications are exciting and could at least match,if not surpass human standards.
文摘The first ablation procedures for small hepatocellular carcinomas were percutaneous ethanol injection under ultrasound(US)guidance.Later,radiofrequency ablation was shown to achieve larger coagulation areas than percutaneous ethanol injection and became the most used ablation technique worldwide.In the past decade,microwave ablation systems have achieved larger ablation areas than radiofrequency ablation,suggesting that the 3-cm barrier could be broken in the treatment of liver tumors.Likewise,US techniques to guide percutaneous ablation have seen important progress.Contrast-enhanced US(CEUS)can define and target the tumor better than US and can assess the size of the ablation area after the procedure,which allows immediate retreatment of the residual tumor foci.Furthermore,fusion imaging fuses real-time US images with computed tomography or magnetic resonance imaging with significant improvements in detecting and targeting lesions with low conspicuity on CEUS.Recently,software powered by artificial intelligence has been developed to allow three-dimensional segmentation and reconstruction of the anatomical structures,aiding in procedure planning,assessing ablation completeness,and targeting the residual viable foci with greater precision than CEUS.Hopefully,this could lead to the ablation of tumors up to 5-7 cm in size.
基金supported by the Zhi-Yuan Chair Professorship Start-up Grant (WF220103010) from Shanghai Jiao Tong University
文摘Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser six cognitive functions and provide new perspectives on which a lot of extensions and particularlly flexible Lmser are proposed.Interestingly,either or two of these dualities actually takes an important role in recent models such as U-net,ResNet,and Dense Net.The second thread is about bidirectional learning principles unified by best yIng-yAng(IA)harmony in BYY system.After getting insights on deep bidirectional learning from a bird-viewing on existing typical learning principles from one or both of the inward and outward directions,maximum likelihood,variational principle,and several other learning principles are summarised as exemplars of the BYY learning,with new perspectives on advanced topics.The third thread further proceeds to deep bidirectional intelligence,driven by long term dynamics(LTD)for parameter learning and short term dynamics(STD)for image thinking and rational thinking in harmony.Image thinking deals with information flow of continuously valued arrays and especially image sequence,as if thinking was displayed in the real world,exemplified by the flow from inward encoding/cognition to outward reconstruction/transformation performed in Lmser learning and BYY learning.In contrast,rational thinking handles symbolic strings or discretely valued vectors,performing uncertainty reasoning and problem solving.In particular,a general thesis is proposed for bidirectional intelligence,featured by BYY intelligence potential theory(BYY-IPT)and nine essential dualities in architecture,fundamentals,and implementation,respectively.Then,problems of combinatorial solving and uncertainty reasoning are investigated from this BYY IPT perspective.First,variants and extensions are suggested for AlphaGoZero like searching tasks,such as traveling salesman problem(TSP)and attributed graph matching(AGM)that are turned into Go like problems with help of a feature enrichment technique.Second,reasoning activities are summarized under guidance of BYY IPT from the aspects of constraint satisfaction,uncertainty propagation,and path or tree searching.Particularly,causal potential theory is proposed for discovering causal direction,with two roads developed for its implementation.
文摘MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gather data.While providing more choices and more comprehensive picture of patients’ conditions to doctors and practitioners,these progresses also require more labor efforts to read,analyze,and make decisions based on those data.It is very difficult for the medical human resources to grow at a speed that matches such need for diagnosis-related expert knowledge.The shortage of expertise has caused long waiting time for check report and fatal misjudged diagnosis in public health system,and it will compromise our ability to move towards a more precise,more personalized and more efficient future of medicine.
文摘The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected problems both of human origins in the universe and mankind’s digital future.And,besides,such an approach allows to deal with self-organising interconversions between the poles of the cardinal dual opposition of the Global Noosphere Brain and the Artificial General Intelligence.Herewith such phenomena of digital social life as Global Digitalisation,Digital Immortality,Mindcloning,and Technological Zombification being the constituents of Technological Singularity Concept,are rethought as paving the way for oncoming Posthuman Digital Era.This concept is evidently exemplified by a bifurcation resulting in two alternatives to be chosen by human beings,to wit,either to be undergone Mindcloning and become digitally immortal or being destroyed by powerful intelligent machines.The investigation in question is based on such a progressive methodology as the Law of Self-Organizing Ideals,as well as on the Method of Dual Oppositions.Rethinking interrelationships between the problem of a sense of social history and the meaning-of-life of local societies members which any intelligent machine is devoid of permits to substantiate specific regularities of Self-Transforming Homo Faber into Homo Digitalis and Technological Zombies ready to be transferred to posthuman cyberspace.
文摘Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.
文摘Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative pain management is intractable not only because children cannot express their emotions accurately and objectively due to their inability to describe physiological characteristics of feeling which are different from those of adults,but also because there is a lack of effective and specific assessment tool for children.In addition,exposure to repeated painful stimuli early in life is known to have short and long-term adverse sequelae.The short-term sequelae can induce a series of neurological,endocrine,cardiovascular system stress related to psychological trauma,while long-term sequelae may alter brain maturation process,which can lead to impair neurodevelopmental,behavioral,and cognitive function.Children’s facial expressions largely reflect the degree of pain,which has led to the developing of a number of pain scoring tools that will help improve the quality of pain mana-gement in children if they are continually studied in depth.The artificial inte-lligence(AI)technology represented by machine learning has reached an unprecedented level in image processing of deep facial models through deep convolutional neural networks,which can effectively identify and systematically analyze various subtle features of children’s facial expressions.Based on the construction of a large database of images of facial expressions in children with perioperative pain,this study proposes to develop and apply automatic facial pain expression recognition software using AI technology.The study aims to improve the postoperative pain management for pediatric population and the short-term and long-term quality of life for pediatric patients after operational event.
文摘Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media.For instance,using natural language processing(NLP)methods,social media can be leveraged to obtain crucial information on the present situation during disasters.In this work,tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model.This investigation employed sentiment analysis(SA)to determine the people’s expressed negative attitudes regarding the disaster.We apply a machine learning algorithm and evaluate the performance using the standard metrics,namely root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE).Our random forest(RF)classifier outperforms comparable works with an accuracy of 98.10%.In order to gain a competitive edge,the study shows how Twitter(now X)data and machine learning(ML)techniques can analyze public discourse and sentiments regarding disasters.It does this by comparing positive and negative comments in order to develop strategies to deal with public sentiments on disasters.
文摘Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and patient-stay with sleep in unfamiliar environments.Current technologies have allowed various devices to diagnose sleep disorders at home.However,these devices are in various validation stages,with many already receiving approvals from competent authorities.This has captured vast patient-related physiologic data for advanced analytics using artificial intelligence through machine and deep learning applications.This is expected to be integrated with patients’Electronic Health Records and provide individualized prescriptive therapy for sleep disorders in the future.
文摘Artificial intelligence (AI) has become increasingly important in geothermal exploration,significantly improving the efficiency of resource identification.This review examines current AI applications,focusing on the algorithms used,the challenges addressed,and the opportunities created.In addition,the review highlights the growth of machine learning applications in geothermal exploration over the past decade,demonstrating how AI has improved the analysis of subsurface data to identify potential resources.AI techniques such as neural networks,support vector machines,and decision trees are used to estimate subsurface temperatures,predict rock and fluid properties,and identify optimal drilling locations.In particular,neural networks are the most widely used technique,further contributing to improved exploration efficiency.However,the widespread adoption of AI in geothermal exploration is hindered by challenges,such as data accessibility,data quality,and the need for tailored data science training for industry professionals.Furthermore,the review emphasizes the importance of data engineering methodologies,data scaling,and standardization to enable the development of accurate and generalizable AI models for geothermal exploration.It is concluded that the integration of AI into geothermal exploration holds great promise for accelerating the development of geothermal energy resources.By effectively addressing key challenges and leveraging AI technologies,the geothermal industry can unlock cost‐effective and sustainable power generation opportunities.