In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid,is investigated within the framework of the two-dimensional linear water wave theory where the upper layer ...The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid,is investigated within the framework of the two-dimensional linear water wave theory where the upper layer is covered by a thin uniform sheet of ice modeled as a thin elastic plate.In such a two-layer fluid there exist waves with two different modes,one with a lower wave number propagate along the ice-cover whilst those with a higher wave number propagate along the interface.An incident wave of a particular wave number gets reflected and transmitted over the bottom undulation into waves of both modes.Perturbation analysis in conjunction with the Fourier transform technique is used to derive the first-order corrections of reflection and transmission coefficients for both the modes due to incident waves of two different modes.One special type of bottom topography is considered as an example to evaluate the related coefficients in detail.These coefficients are depicted in graphical forms to demonstrate the transformation of wave energy between the two modes and also to illustrate the effects of the ice sheet and the porosity of the undulating bed.展开更多
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia....Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.展开更多
In this study, a simple and effective technique for establishing an external mass transfer model in a recirculated packed-bed batch reactor (RPBBR) with an immobilized lipase enzyme and Jatropha oil system is presente...In this study, a simple and effective technique for establishing an external mass transfer model in a recirculated packed-bed batch reactor (RPBBR) with an immobilized lipase enzyme and Jatropha oil system is presented. The external mass transfer effect can be represented with a model in the form of Colburn factor JD = K Re-(1–n). The value of K and n were derived from experimental data at different mass flow rates.The experiment shows an average increment of 1.51% FFA for calcium alginate and 1.62% FFA for carrageenan after the hydrolysis took place. Based on different biopolymer material used in immobilized beads, JD = 1.674 Re-0.4 for calcium alginate and JD = 1.881 Re-0.3 for k-carrageenan were found to be adequate to predict the experimental data for external mass transfer in the reactor in the Reynolds number range of 0.2 to 1.2. The purposed model can be used for the design of industrial bioreactor and scale up. Besides, the external mass transfer coefficients for the hydrolysis of Jatropha oil reaction and the entrapment efficiency for the two biopolymer materials used were also investigated.展开更多
We have proposed a new mathematical method,the SEIHCRD model,which has an excellent potential to predict the incidence of COVID-19 diseases.Our proposed SEIHCRD model is an extension of the SEIR model.Three-compartmen...We have proposed a new mathematical method,the SEIHCRD model,which has an excellent potential to predict the incidence of COVID-19 diseases.Our proposed SEIHCRD model is an extension of the SEIR model.Three-compartments have added death,hospitalized,and critical,which improves the basic understanding of disease spread and results.We have studiedCOVID-19 cases of six countries,where the impact of this disease in the highest are Brazil,India,Italy,Spain,the United Kingdom,and the United States.After estimating model parameters based on available clinical data,the modelwill propagate and forecast dynamic evolution.Themodel calculates the Basic reproduction number over time using logistic regression and the Case fatality rate based on the selected countries’age-category scenario.Themodel calculates two types of Case fatality rate one is CFR daily,and the other is total CFR.The proposed model estimates the approximate time when the disease is at its peak and the approximate time when death cases rarely occur and calculate how much hospital beds and ICU beds will be needed in the peak days of infection.The SEIHCRD model outperforms the classic ARXmodel and the ARIMA model.RMSE,MAPE,andRsquaredmatrices are used to evaluate results and are graphically represented using Taylor and Target diagrams.The result shows RMSE has improved by 56%–74%,and MAPE has a 53%–89%improvement in prediction accuracy.展开更多
Mercury emitted from direct combustion of high-mercury coal does great harm to the environment. To make good use of high-mercury coal, it is necessary to study the occurrence characteristics of mercury in coal and hig...Mercury emitted from direct combustion of high-mercury coal does great harm to the environment. To make good use of high-mercury coal, it is necessary to study the occurrence characteristics of mercury in coal and high-efficient methods of mercury removal. In this paper, high-mercury coal of Guizhou Province of China was taken as an object to study the nature of mercury in coal and the rule of mercury removal by dry preparation method. Mercury mainly distributes in the medium and high density fractions, and has a good affinity with silicon, aluminum, iron, titanium, potassium, calcium, zinc, sodium and magnesium. It exists in minerals formed by these elements and presents significant correlation with ash in coal. After the high-mercury coal is separated by air dense medium fluidized bed, mercury content of clean coal is reduced to 1/10 of raw coal, while mercury content of gangue is increased to 3 times that of raw coal. This indicates that mercury in raw coal is rejected greatly by ADMFB and enriched in highdensity fractions. The rates of ash removal and mercury removal decrease with the density and present a very high correlation.展开更多
Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws...Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.展开更多
Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized co...Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.展开更多
Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on ...Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.展开更多
We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current...We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.展开更多
Posidonia oceanicameadows are experiencing a progressive decline, and monitoring their status is crucial for the maintenance of theseecosystems. We performed a comparativeanalysis of bed density, total phenol content ...Posidonia oceanicameadows are experiencing a progressive decline, and monitoring their status is crucial for the maintenance of theseecosystems. We performed a comparativeanalysis of bed density, total phenol content and protein expression pattern to assess the conservation status ofPosidoniaplants from the S. Marinella (Rome, Italy) meadow. The total phenol content was inversely related to maximum beddensity, confirming the relationship betweenhigh phenol content and stressful conditions. In addition, protein expression pattern profilesshowed that the number of differentially expressed proteins was dramatically reduced in the latest years compared to previous analyses. Our results support the usefulness of integrating solid descriptors, such as phenol content, with novel biochemical/molecular approaches in the monitoring of meadows.展开更多
A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main ob...A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.展开更多
With the construction of new countryside and the development of people's living standard,the environmental problems caused by rural domestic sewage gradually attracts more attention. Ecological floating bed is one...With the construction of new countryside and the development of people's living standard,the environmental problems caused by rural domestic sewage gradually attracts more attention. Ecological floating bed is one of the effective techniques for treating rural domestic sewage. Building different types of ecological floating beds according to the surrounding environment characteristics in rural areas could treat rural domestic sewage with low operation cost,simple management and convenient maintenance,and could obtain a certain economic benefit as well. Therefore,ecological floating bed get fast development in treating rural domestic sewage. The screening of plants would be vital as an important role. Assembling different plants by choosing those with ornamental function,economic benefit and strong decontamination ability according to the surrounding environment and characteristics of domestic waste water along with the seasonal features of plant growth could take full advantages of ecological floating bed.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
基金Supprted by the ISIRD grant(Ref.No.16-3/10/IITRPR/Acad/116)
文摘The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid,is investigated within the framework of the two-dimensional linear water wave theory where the upper layer is covered by a thin uniform sheet of ice modeled as a thin elastic plate.In such a two-layer fluid there exist waves with two different modes,one with a lower wave number propagate along the ice-cover whilst those with a higher wave number propagate along the interface.An incident wave of a particular wave number gets reflected and transmitted over the bottom undulation into waves of both modes.Perturbation analysis in conjunction with the Fourier transform technique is used to derive the first-order corrections of reflection and transmission coefficients for both the modes due to incident waves of two different modes.One special type of bottom topography is considered as an example to evaluate the related coefficients in detail.These coefficients are depicted in graphical forms to demonstrate the transformation of wave energy between the two modes and also to illustrate the effects of the ice sheet and the porosity of the undulating bed.
文摘Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.
文摘In this study, a simple and effective technique for establishing an external mass transfer model in a recirculated packed-bed batch reactor (RPBBR) with an immobilized lipase enzyme and Jatropha oil system is presented. The external mass transfer effect can be represented with a model in the form of Colburn factor JD = K Re-(1–n). The value of K and n were derived from experimental data at different mass flow rates.The experiment shows an average increment of 1.51% FFA for calcium alginate and 1.62% FFA for carrageenan after the hydrolysis took place. Based on different biopolymer material used in immobilized beads, JD = 1.674 Re-0.4 for calcium alginate and JD = 1.881 Re-0.3 for k-carrageenan were found to be adequate to predict the experimental data for external mass transfer in the reactor in the Reynolds number range of 0.2 to 1.2. The purposed model can be used for the design of industrial bioreactor and scale up. Besides, the external mass transfer coefficients for the hydrolysis of Jatropha oil reaction and the entrapment efficiency for the two biopolymer materials used were also investigated.
基金The work has been supported by a grant received from the Ministry of Education,Government of India under the Scheme for the Promotion of Academic and Research Collaboration(SPARC)(ID:SPARC/2019/1396).
文摘We have proposed a new mathematical method,the SEIHCRD model,which has an excellent potential to predict the incidence of COVID-19 diseases.Our proposed SEIHCRD model is an extension of the SEIR model.Three-compartments have added death,hospitalized,and critical,which improves the basic understanding of disease spread and results.We have studiedCOVID-19 cases of six countries,where the impact of this disease in the highest are Brazil,India,Italy,Spain,the United Kingdom,and the United States.After estimating model parameters based on available clinical data,the modelwill propagate and forecast dynamic evolution.Themodel calculates the Basic reproduction number over time using logistic regression and the Case fatality rate based on the selected countries’age-category scenario.Themodel calculates two types of Case fatality rate one is CFR daily,and the other is total CFR.The proposed model estimates the approximate time when the disease is at its peak and the approximate time when death cases rarely occur and calculate how much hospital beds and ICU beds will be needed in the peak days of infection.The SEIHCRD model outperforms the classic ARXmodel and the ARIMA model.RMSE,MAPE,andRsquaredmatrices are used to evaluate results and are graphically represented using Taylor and Target diagrams.The result shows RMSE has improved by 56%–74%,and MAPE has a 53%–89%improvement in prediction accuracy.
基金the National Natural Science Foundation of China (No.51774283)Jiangsu Planned Projects for Postdoctoral Research Funds (1301030C) for the financial supports
文摘Mercury emitted from direct combustion of high-mercury coal does great harm to the environment. To make good use of high-mercury coal, it is necessary to study the occurrence characteristics of mercury in coal and high-efficient methods of mercury removal. In this paper, high-mercury coal of Guizhou Province of China was taken as an object to study the nature of mercury in coal and the rule of mercury removal by dry preparation method. Mercury mainly distributes in the medium and high density fractions, and has a good affinity with silicon, aluminum, iron, titanium, potassium, calcium, zinc, sodium and magnesium. It exists in minerals formed by these elements and presents significant correlation with ash in coal. After the high-mercury coal is separated by air dense medium fluidized bed, mercury content of clean coal is reduced to 1/10 of raw coal, while mercury content of gangue is increased to 3 times that of raw coal. This indicates that mercury in raw coal is rejected greatly by ADMFB and enriched in highdensity fractions. The rates of ash removal and mercury removal decrease with the density and present a very high correlation.
文摘Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.
文摘Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.
文摘Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.
文摘We discussed the unsteady flow of an incompressible viscous fluid in a rotating parallel plate channel bounded on one side by a porous bed under the influence of a uniform transverse magnetic field taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate. The flow in the clean fluid region is governed by Navier-Stoke’s equations while in the porous bed the equations are based on Darcy-Lapwood model. The exact solutions of velocity in the clean fluid and the porous medium consist of steady state and transient state. The time required for the transient state to decay is evaluated in detail and ultimate quasi-steady state solution has been derived analytically and also its behaviour is computationally discussed with reference to different flow parameters. The shear stresses on the boundaries and the mass flux are also obtained analytically and their behaviour is computationally discussed.
文摘Posidonia oceanicameadows are experiencing a progressive decline, and monitoring their status is crucial for the maintenance of theseecosystems. We performed a comparativeanalysis of bed density, total phenol content and protein expression pattern to assess the conservation status ofPosidoniaplants from the S. Marinella (Rome, Italy) meadow. The total phenol content was inversely related to maximum beddensity, confirming the relationship betweenhigh phenol content and stressful conditions. In addition, protein expression pattern profilesshowed that the number of differentially expressed proteins was dramatically reduced in the latest years compared to previous analyses. Our results support the usefulness of integrating solid descriptors, such as phenol content, with novel biochemical/molecular approaches in the monitoring of meadows.
文摘A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.
基金Supported by National Natural Science Foundation of China(41263006,41661019,2014BAC04B02,21567010)Project of Department of Science and Technology of Jiangxi Province(20124ACB01200,20122BBG70086,20142BCB24009)Project of Jiangxi Academy of Sciences(GKKZ(2013)19-06,2016-YCXY-04,2013-XTPH1-14,2013H003)
文摘With the construction of new countryside and the development of people's living standard,the environmental problems caused by rural domestic sewage gradually attracts more attention. Ecological floating bed is one of the effective techniques for treating rural domestic sewage. Building different types of ecological floating beds according to the surrounding environment characteristics in rural areas could treat rural domestic sewage with low operation cost,simple management and convenient maintenance,and could obtain a certain economic benefit as well. Therefore,ecological floating bed get fast development in treating rural domestic sewage. The screening of plants would be vital as an important role. Assembling different plants by choosing those with ornamental function,economic benefit and strong decontamination ability according to the surrounding environment and characteristics of domestic waste water along with the seasonal features of plant growth could take full advantages of ecological floating bed.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.