This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the ...This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser s...Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser six cognitive functions and provide new perspectives on which a lot of extensions and particularlly flexible Lmser are proposed.Interestingly,either or two of these dualities actually takes an important role in recent models such as U-net,ResNet,and Dense Net.The second thread is about bidirectional learning principles unified by best yIng-yAng(IA)harmony in BYY system.After getting insights on deep bidirectional learning from a bird-viewing on existing typical learning principles from one or both of the inward and outward directions,maximum likelihood,variational principle,and several other learning principles are summarised as exemplars of the BYY learning,with new perspectives on advanced topics.The third thread further proceeds to deep bidirectional intelligence,driven by long term dynamics(LTD)for parameter learning and short term dynamics(STD)for image thinking and rational thinking in harmony.Image thinking deals with information flow of continuously valued arrays and especially image sequence,as if thinking was displayed in the real world,exemplified by the flow from inward encoding/cognition to outward reconstruction/transformation performed in Lmser learning and BYY learning.In contrast,rational thinking handles symbolic strings or discretely valued vectors,performing uncertainty reasoning and problem solving.In particular,a general thesis is proposed for bidirectional intelligence,featured by BYY intelligence potential theory(BYY-IPT)and nine essential dualities in architecture,fundamentals,and implementation,respectively.Then,problems of combinatorial solving and uncertainty reasoning are investigated from this BYY IPT perspective.First,variants and extensions are suggested for AlphaGoZero like searching tasks,such as traveling salesman problem(TSP)and attributed graph matching(AGM)that are turned into Go like problems with help of a feature enrichment technique.Second,reasoning activities are summarized under guidance of BYY IPT from the aspects of constraint satisfaction,uncertainty propagation,and path or tree searching.Particularly,causal potential theory is proposed for discovering causal direction,with two roads developed for its implementation.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra in the vicinity of the exciton-resonance frequency An=1 for CdS-type crystals have been theoretically and experimentally investigated with all...The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra in the vicinity of the exciton-resonance frequency An=1 for CdS-type crystals have been theoretically and experimentally investigated with allowance for the mechanical exciton decay . The results of the numerical calculations of the partial and interference contributions of the bulk and radiative surface spectral modes to the EPL in the geometry of additional s- and p-polarized waves emitted into vacuum are analyzed. It is shown that the contributions of purely longitudinal excitons and their interference with polaritons of the upper dispersion branch near the longitudinal frequency ωL to the EPL are small (∼10% - 30%);nevertheless, they must be taken into account to obtain quantitative agreement with experimental data. Specifically these contributions are responsible for the formation of an additional line (along with the fundamental AT line) in the case of oblique incidence of radiation.展开更多
In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts ...In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.展开更多
Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we exam...Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.展开更多
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
From the author, there are not less than a dozen of rather significant recent publications in scientific editions anticipating some aspects of importance to innovation such as “bigger data”, AI, IP, and frontier tec...From the author, there are not less than a dozen of rather significant recent publications in scientific editions anticipating some aspects of importance to innovation such as “bigger data”, AI, IP, and frontier technology with a central massive contribution in 2020 on AI, IP, and EI. Nonetheless, the IP associated with AI remains still barely covered in scientific publications. Especially patent discussion tends to be rather a legal matter. Another trilogy, 2013, “Business Strategy-IP Strategy-R&D Strategy: An All-in-One Business Model” proposed by the author, marked the advent, and customized implementation of a new strategy level. After the two trilogies’ volumes, the AI-IP “accessibility” chapter was a logical step brought to the attention of a larger public by the author. The time now to bring to light another chapter, namely the IP eligibility of AI innovation steps in ad hoc inventions. The main objectives of this short, principally illustrated communication, are to: 1) Revise the best mode requirement status, i.e. the best way to enable the reproducibility of claimed matter, reviewing its need for improvement when AI is involved. And proposing a unique sequence of evolution inspired by IP’s current and evolving practices. 2) Give a new dimension to visual aids to help the Best Mode description, demystify AI complexity, and underline frontier traits that may hinder a confident adoption or well-argued rejection. 3) Further illustrations take into account the fact that IoT, AI, and 3D can be simpler than perceived. 4) Finally ATA©, Adjacent Technology Analysis, is timely refreshed in a unique challenging, indeed tumultuous, environment. 5) Bias, such as semantic ones is consistently monitored. 6) Overall leaving space for innovative pleasurable interpretation. The emphasis is on educational, illustrative and demonstrative value.展开更多
The TCM philosophy of a meridian and associated channels pertains to the specific function of one or more organs. We define the <span style="font-family:Verdana;">Lung Primary Meridian (LUM) together w...The TCM philosophy of a meridian and associated channels pertains to the specific function of one or more organs. We define the <span style="font-family:Verdana;">Lung Primary Meridian (LUM) together with the </span><span style="font-family:Verdana;">Lung Sinew (LUSC), Divergent (LUDC), Luo-connecting (LULCC) Channels as a system of routes plus some parts of the body (such as muscles) to fulfil respiration, as a main function under different situations. There is very limited information about the Lung associated channels in classical literature of TCM. With a clear focus on the function of respiration, we have carried out a detailed analysis of the biomedical consequence of stimulating the LUM, analysed the roles played by LUSC, LUDC, and LULCC. The updated LUM and LUDC include acupoints of other meridians, serving the same purpose of performing satisfactory respiration starting from checking the quality of the inflow through the nose. The LUSC includes the respiratory muscles (plus the associated connective tissues) extending to various parts of the body. The muscles of the limb (as part of the LUSC) embrace the nerves that provide routes for somatosensory reflexes and play the role of locomotion, providing voluntary respiration via the pectoralis muscles. The muscles of LUSC are bounded by stiff connective tissue layers, forming compartments, and are part of the pulley system for various body locomotions. Within a compartment, the interstitial fluid, blood, lymph flows must be potent to protect the associated nerves related to LUM;the healthy state of the LUSC also provides freedom of various types of locomotion. The LULCC exists because the vagus nerve has a part of it passing through the spinal cords all the way down to the sacrum domain, with exiting nerve innervating two-third of the large intestine. The crucial steps of our deductions </span><span style="font-family:Verdana;">are supported by experimental evidence based on modern neurophysiology and kinesiology. We discover that all the four channels stated above work as a unit system to allow respiration to be possible under various postures/conditions. </span><span style="font-family:Verdana;">The complexity of structures and processes is eased off by providing 29 figures and 13 tables for the relevant muscles and nerves. In addition to respiration, the Lung system in TCM context includes interaction of this system with the sweat gland and neuroendocrine system;such aspects will be left to another study.</span>展开更多
Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of ...Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of the synchronous machine as well as the absence of brushes and slip rings, and using a fractionally rated frequency converter. Hence, there are considerable benefits over the conventional machines, when the machine is applied to applications such as a wind turbine generator or high power adjustable speed drive. However, these benefits are obtained in slightly more complex structure, higher cost and larger dimensions in comparison to the conventional induction machine. This paper presents fundamental aspects of the three modes of operation of brushless doubly fed machine, i.e. simple induction mode, cascade induction mode, and synchronous mode. The investigation is performed by analyzing the spatial harmonic contents of the rotor magnetic flux density. The direct cross couplings between stator and rotor fields as well as, indirect cross coupling between stator fields by the special rotor of this machine is described. Furthermore, loss analysis of the machine in various modes is presented and the torque-speed curves for asynchronous modes are obtained. A 2-D magnetodynamic finite element model based on the D-180 4/8 pole prototype machine is extracted and simulated to verify the results.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
In this paper, the main schemes of connection admission control (CAC) in ATM networks are briefly discussed especially the principle of dynamic bandwidth allocation. Then the fair share of the bandwidth among differen...In this paper, the main schemes of connection admission control (CAC) in ATM networks are briefly discussed especially the principle of dynamic bandwidth allocation. Then the fair share of the bandwidth among different traffic sources is analyzed based on cooperative game model. A CAC scheme is proposed using the genetic algorithm (GA) to optimize the bandwidth-delay-product formed utilization function that ensures the fair share and accuracy of accepting/rejecting the incoming calls. Simulation results show that the proposed scheme ensures fairness of the shared bandwidth to different traffic sources.展开更多
Corporate sustainability reporting has become increasingly important in recent years.However,conventional approaches reach their limits when it comes to quantifying and measuring the actual sustainability performance ...Corporate sustainability reporting has become increasingly important in recent years.However,conventional approaches reach their limits when it comes to quantifying and measuring the actual sustainability performance of a company.This article presents a new approach:Sustainable Performance Accounting(SPA),which is based on an extension of bookkeeping by including ESG bookkeeping.SPA enables companies to systematically measure and manage their sustainability performance.The article provides an overview of the basics of SPA methodology and uses a comprehensive example showing how SPA can be implemented in practice.The article is aimed at interested readers from science and practice as well as decision-makers who are interested in future-oriented sustainability reporting.展开更多
The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and...Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.展开更多
The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM)...The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.展开更多
文摘This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
基金supported by the Zhi-Yuan Chair Professorship Start-up Grant (WF220103010) from Shanghai Jiao Tong University
文摘Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser six cognitive functions and provide new perspectives on which a lot of extensions and particularlly flexible Lmser are proposed.Interestingly,either or two of these dualities actually takes an important role in recent models such as U-net,ResNet,and Dense Net.The second thread is about bidirectional learning principles unified by best yIng-yAng(IA)harmony in BYY system.After getting insights on deep bidirectional learning from a bird-viewing on existing typical learning principles from one or both of the inward and outward directions,maximum likelihood,variational principle,and several other learning principles are summarised as exemplars of the BYY learning,with new perspectives on advanced topics.The third thread further proceeds to deep bidirectional intelligence,driven by long term dynamics(LTD)for parameter learning and short term dynamics(STD)for image thinking and rational thinking in harmony.Image thinking deals with information flow of continuously valued arrays and especially image sequence,as if thinking was displayed in the real world,exemplified by the flow from inward encoding/cognition to outward reconstruction/transformation performed in Lmser learning and BYY learning.In contrast,rational thinking handles symbolic strings or discretely valued vectors,performing uncertainty reasoning and problem solving.In particular,a general thesis is proposed for bidirectional intelligence,featured by BYY intelligence potential theory(BYY-IPT)and nine essential dualities in architecture,fundamentals,and implementation,respectively.Then,problems of combinatorial solving and uncertainty reasoning are investigated from this BYY IPT perspective.First,variants and extensions are suggested for AlphaGoZero like searching tasks,such as traveling salesman problem(TSP)and attributed graph matching(AGM)that are turned into Go like problems with help of a feature enrichment technique.Second,reasoning activities are summarized under guidance of BYY IPT from the aspects of constraint satisfaction,uncertainty propagation,and path or tree searching.Particularly,causal potential theory is proposed for discovering causal direction,with two roads developed for its implementation.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
文摘The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra in the vicinity of the exciton-resonance frequency An=1 for CdS-type crystals have been theoretically and experimentally investigated with allowance for the mechanical exciton decay . The results of the numerical calculations of the partial and interference contributions of the bulk and radiative surface spectral modes to the EPL in the geometry of additional s- and p-polarized waves emitted into vacuum are analyzed. It is shown that the contributions of purely longitudinal excitons and their interference with polaritons of the upper dispersion branch near the longitudinal frequency ωL to the EPL are small (∼10% - 30%);nevertheless, they must be taken into account to obtain quantitative agreement with experimental data. Specifically these contributions are responsible for the formation of an additional line (along with the fundamental AT line) in the case of oblique incidence of radiation.
基金Supported by Research Project of Postgraduate Education and Teaching Reform in Jilin Province in 2023(JJKH20230060YJG)Research Project of Teaching Reform of Vocational Education and Adult Education in Jilin Province(2022ZCY295)+5 种基金Scientific Research Project of Higher Education in Jilin Province in 2023(JGJX2023D200)Research Project of Teaching Reform of Higher Education in 2023(XJSX202301)Research Project of Teaching Reform of Higher Education in 2023(XJ202303)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ04)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ01)Provincial College Students Innovation and Entrepreneurship Project(S202310199042&S202310199043).
文摘In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.
基金The Key Research&Development Program of the Ministry of Science and Technology of China under contract No.2022YFC2807601the National Natural Science Foundation of China under contract Nos 41941008 and 41876221+3 种基金the Fund of Shanghai Science and Technology Committee under contract Nos 20230711100 and 21QA1404300the Impact and Response of Antarctic Seas to Climate Change funded by the Chinese Arctic and Antarctic Administration under contract No.IRASCC 1-02-01Bthe National Key Research and Development Program of China under contract No.2019YFC1509102the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University under contract No.21TQ1400201。
文摘Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.
文摘From the author, there are not less than a dozen of rather significant recent publications in scientific editions anticipating some aspects of importance to innovation such as “bigger data”, AI, IP, and frontier technology with a central massive contribution in 2020 on AI, IP, and EI. Nonetheless, the IP associated with AI remains still barely covered in scientific publications. Especially patent discussion tends to be rather a legal matter. Another trilogy, 2013, “Business Strategy-IP Strategy-R&D Strategy: An All-in-One Business Model” proposed by the author, marked the advent, and customized implementation of a new strategy level. After the two trilogies’ volumes, the AI-IP “accessibility” chapter was a logical step brought to the attention of a larger public by the author. The time now to bring to light another chapter, namely the IP eligibility of AI innovation steps in ad hoc inventions. The main objectives of this short, principally illustrated communication, are to: 1) Revise the best mode requirement status, i.e. the best way to enable the reproducibility of claimed matter, reviewing its need for improvement when AI is involved. And proposing a unique sequence of evolution inspired by IP’s current and evolving practices. 2) Give a new dimension to visual aids to help the Best Mode description, demystify AI complexity, and underline frontier traits that may hinder a confident adoption or well-argued rejection. 3) Further illustrations take into account the fact that IoT, AI, and 3D can be simpler than perceived. 4) Finally ATA©, Adjacent Technology Analysis, is timely refreshed in a unique challenging, indeed tumultuous, environment. 5) Bias, such as semantic ones is consistently monitored. 6) Overall leaving space for innovative pleasurable interpretation. The emphasis is on educational, illustrative and demonstrative value.
文摘The TCM philosophy of a meridian and associated channels pertains to the specific function of one or more organs. We define the <span style="font-family:Verdana;">Lung Primary Meridian (LUM) together with the </span><span style="font-family:Verdana;">Lung Sinew (LUSC), Divergent (LUDC), Luo-connecting (LULCC) Channels as a system of routes plus some parts of the body (such as muscles) to fulfil respiration, as a main function under different situations. There is very limited information about the Lung associated channels in classical literature of TCM. With a clear focus on the function of respiration, we have carried out a detailed analysis of the biomedical consequence of stimulating the LUM, analysed the roles played by LUSC, LUDC, and LULCC. The updated LUM and LUDC include acupoints of other meridians, serving the same purpose of performing satisfactory respiration starting from checking the quality of the inflow through the nose. The LUSC includes the respiratory muscles (plus the associated connective tissues) extending to various parts of the body. The muscles of the limb (as part of the LUSC) embrace the nerves that provide routes for somatosensory reflexes and play the role of locomotion, providing voluntary respiration via the pectoralis muscles. The muscles of LUSC are bounded by stiff connective tissue layers, forming compartments, and are part of the pulley system for various body locomotions. Within a compartment, the interstitial fluid, blood, lymph flows must be potent to protect the associated nerves related to LUM;the healthy state of the LUSC also provides freedom of various types of locomotion. The LULCC exists because the vagus nerve has a part of it passing through the spinal cords all the way down to the sacrum domain, with exiting nerve innervating two-third of the large intestine. The crucial steps of our deductions </span><span style="font-family:Verdana;">are supported by experimental evidence based on modern neurophysiology and kinesiology. We discover that all the four channels stated above work as a unit system to allow respiration to be possible under various postures/conditions. </span><span style="font-family:Verdana;">The complexity of structures and processes is eased off by providing 29 figures and 13 tables for the relevant muscles and nerves. In addition to respiration, the Lung system in TCM context includes interaction of this system with the sweat gland and neuroendocrine system;such aspects will be left to another study.</span>
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
文摘Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of the synchronous machine as well as the absence of brushes and slip rings, and using a fractionally rated frequency converter. Hence, there are considerable benefits over the conventional machines, when the machine is applied to applications such as a wind turbine generator or high power adjustable speed drive. However, these benefits are obtained in slightly more complex structure, higher cost and larger dimensions in comparison to the conventional induction machine. This paper presents fundamental aspects of the three modes of operation of brushless doubly fed machine, i.e. simple induction mode, cascade induction mode, and synchronous mode. The investigation is performed by analyzing the spatial harmonic contents of the rotor magnetic flux density. The direct cross couplings between stator and rotor fields as well as, indirect cross coupling between stator fields by the special rotor of this machine is described. Furthermore, loss analysis of the machine in various modes is presented and the torque-speed curves for asynchronous modes are obtained. A 2-D magnetodynamic finite element model based on the D-180 4/8 pole prototype machine is extracted and simulated to verify the results.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
基金National Science Foundation of China,Grant No.69682010
文摘In this paper, the main schemes of connection admission control (CAC) in ATM networks are briefly discussed especially the principle of dynamic bandwidth allocation. Then the fair share of the bandwidth among different traffic sources is analyzed based on cooperative game model. A CAC scheme is proposed using the genetic algorithm (GA) to optimize the bandwidth-delay-product formed utilization function that ensures the fair share and accuracy of accepting/rejecting the incoming calls. Simulation results show that the proposed scheme ensures fairness of the shared bandwidth to different traffic sources.
文摘Corporate sustainability reporting has become increasingly important in recent years.However,conventional approaches reach their limits when it comes to quantifying and measuring the actual sustainability performance of a company.This article presents a new approach:Sustainable Performance Accounting(SPA),which is based on an extension of bookkeeping by including ESG bookkeeping.SPA enables companies to systematically measure and manage their sustainability performance.The article provides an overview of the basics of SPA methodology and uses a comprehensive example showing how SPA can be implemented in practice.The article is aimed at interested readers from science and practice as well as decision-makers who are interested in future-oriented sustainability reporting.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.
基金Under the auspices of the National Natural Science Foundation of China(No.41971202)the National Natural Science Foundation of China(No.42201181)the Fundamental research funding targets for central universities(No.2412022QD002)。
文摘Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.
文摘The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.