In this paper, we present a solution to the ultra low voltage inverter by adding a keeper transistor in order to make the semi-floating-gate more stable and to reduce the current dissipation. Moreover, we also present...In this paper, we present a solution to the ultra low voltage inverter by adding a keeper transistor in order to make the semi-floating-gate more stable and to reduce the current dissipation. Moreover, we also present a differential ULV inverter and elaborate on the reliability and fault tolerance of the gate. The differential ULV gate compared to both a former ULV gate and standard CMOS are given. The results are obtained through Monte-Carlo simulations.展开更多
In the article stake accelerator has proposed on the side of the roll box in order to increase the productivity of the gin machine. The effect to the raw material of the proposed stakes was studied. Movement different...In the article stake accelerator has proposed on the side of the roll box in order to increase the productivity of the gin machine. The effect to the raw material of the proposed stakes was studied. Movement differential equation of the seed roller was made up and necessary graphics were taken based on laws.展开更多
The influence of towing speed on the effectiveness of the 4-sided impact roller using earth pressure cells(EPCs)is investigated.Two field trials were undertaken;the first trial used three EPCs placed at varying depths...The influence of towing speed on the effectiveness of the 4-sided impact roller using earth pressure cells(EPCs)is investigated.Two field trials were undertaken;the first trial used three EPCs placed at varying depths between 0.5 m and 1.5 m with towing speeds of 9-12 km/h.The second used three EPCs placed at a uniform depth of 0.8 m,with towing speeds of 5-15 km/h.The findings from the two trials confirmed that towing speed influences the pressure imparted to the ground and hence compactive effort.This paper proposes that the energy imparted to the ground is best described in terms of work done,which is the sum of the change in both potential and kinetic energies.Current practice of using either kinetic energy or gravitational potential energy should be avoided as neither can accurately quantify rolling dynamic compaction(RDC)when towing speed is varied.展开更多
In this paper, we propose a unified differential operator method to study mechanical vibrations, solving inhomogeneous linear ordinary differential equations with constant coefficients. The main advantage of this new ...In this paper, we propose a unified differential operator method to study mechanical vibrations, solving inhomogeneous linear ordinary differential equations with constant coefficients. The main advantage of this new method is that the differential operator D in the numerator of the fraction has no effect on input functions (i.e., the derivative operation is removed) because we take the fraction as a whole part in the partial fraction expansion. The method in various variants is widely implemented in related fields in mechanics and engineering. We also point out that the same mistakes in the differential operator method are found in the related references [1-4].展开更多
The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investiga...The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.展开更多
This is a fresh perspective on the sun that considers its huge spherical size in relation to the finite speed of light. The sun is so extended that it takes light approximately 2.32 seconds to travel from the plane of...This is a fresh perspective on the sun that considers its huge spherical size in relation to the finite speed of light. The sun is so extended that it takes light approximately 2.32 seconds to travel from the plane of the solar limb to the plane tangential to the sun at the solar disc’s center. The aforementioned information is utilized in this study to support the new viewpoints. Firstly, it is shown that the solar disc is a simultaneous view of successively emitted coaxial spherical circles. Secondly, despite the fact that the sun is gaseous, it is thought to revolve completely as a rigid body at a fixed angular speed, yet an observer on Earth sees it rotate differentially. In a simple mathematical approach, it is found that the sun’s rotational speed apparently decreases with latitude. Thirdly, a qualitative examination of how we observe simultaneous whole-surface brightness changes of the sun and sunlike stars indicates that such changes would appear to spread out radially from the center of the solar disc.展开更多
A very coarse-grained(335μm)Fe_(41)Mn_(25)Ni_(24)Co_(8)Cr_(2)high-entropy alloy with a single FCC phase was cold rolling to a 80%reduction in thickness using the differential speed rolling technique with various spee...A very coarse-grained(335μm)Fe_(41)Mn_(25)Ni_(24)Co_(8)Cr_(2)high-entropy alloy with a single FCC phase was cold rolling to a 80%reduction in thickness using the differential speed rolling technique with various speed ratios(SRs)ranging between 1 and 4.As the SR was increased,the volume fraction of the region of high-density micro-shear bands increased to accommodate the higher shear strain.At SR=4,the entire thickness of the sheet was covered with micro-shear bands,and ultrafine(sub)grains with a size of1.4μm were uniformly formed along the shear bands.A continuous dynamic recrystallization(CDRX)mechanism occurred during rolling,and a higher SR accelerated the CDRX process.During conventional rolling(at SR=1),a brass{110}<112>orientation texture with minor components of S{123}<634>and Cu{112}<111>orientations developed.At higher SRs,shear texture developed as the main type,while the development of rolling texture was suppressed.The microstructure at SR=4 obtained after annealing at973 K showed a fully recrystallized microstructure composed of a five times smaller grain size(4μm)with a higher intensity ofγfiber texture compared with that prepared by conventional rolling.The samples processed with high SRs exhibited better tensile properties compared with the conventionally rolled sample in terms of strength and ductility after annealing.The current results demonstrate that by using differential speed rolling with a high SR,one can achieve a significantly finer and more homogeneous microstructure,stronger shear texture,and superior tensile mechanical properties for an FCC high-entropy alloy compared to that obtained by conventional rolling.The strength of the as-rolled and annealed samples was quantitatively explained by considering the contribution of grain size and dislocation density to strengthening.展开更多
A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational spee...A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.展开更多
文摘In this paper, we present a solution to the ultra low voltage inverter by adding a keeper transistor in order to make the semi-floating-gate more stable and to reduce the current dissipation. Moreover, we also present a differential ULV inverter and elaborate on the reliability and fault tolerance of the gate. The differential ULV gate compared to both a former ULV gate and standard CMOS are given. The results are obtained through Monte-Carlo simulations.
文摘In the article stake accelerator has proposed on the side of the roll box in order to increase the productivity of the gin machine. The effect to the raw material of the proposed stakes was studied. Movement differential equation of the seed roller was made up and necessary graphics were taken based on laws.
文摘The influence of towing speed on the effectiveness of the 4-sided impact roller using earth pressure cells(EPCs)is investigated.Two field trials were undertaken;the first trial used three EPCs placed at varying depths between 0.5 m and 1.5 m with towing speeds of 9-12 km/h.The second used three EPCs placed at a uniform depth of 0.8 m,with towing speeds of 5-15 km/h.The findings from the two trials confirmed that towing speed influences the pressure imparted to the ground and hence compactive effort.This paper proposes that the energy imparted to the ground is best described in terms of work done,which is the sum of the change in both potential and kinetic energies.Current practice of using either kinetic energy or gravitational potential energy should be avoided as neither can accurately quantify rolling dynamic compaction(RDC)when towing speed is varied.
文摘In this paper, we propose a unified differential operator method to study mechanical vibrations, solving inhomogeneous linear ordinary differential equations with constant coefficients. The main advantage of this new method is that the differential operator D in the numerator of the fraction has no effect on input functions (i.e., the derivative operation is removed) because we take the fraction as a whole part in the partial fraction expansion. The method in various variants is widely implemented in related fields in mechanics and engineering. We also point out that the same mistakes in the differential operator method are found in the related references [1-4].
文摘The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.
文摘This is a fresh perspective on the sun that considers its huge spherical size in relation to the finite speed of light. The sun is so extended that it takes light approximately 2.32 seconds to travel from the plane of the solar limb to the plane tangential to the sun at the solar disc’s center. The aforementioned information is utilized in this study to support the new viewpoints. Firstly, it is shown that the solar disc is a simultaneous view of successively emitted coaxial spherical circles. Secondly, despite the fact that the sun is gaseous, it is thought to revolve completely as a rigid body at a fixed angular speed, yet an observer on Earth sees it rotate differentially. In a simple mathematical approach, it is found that the sun’s rotational speed apparently decreases with latitude. Thirdly, a qualitative examination of how we observe simultaneous whole-surface brightness changes of the sun and sunlike stars indicates that such changes would appear to spread out radially from the center of the solar disc.
基金financially supported by the National Research Foundation of Korea funded by the Korean government(MSIT)(Project No.NRF 2020R1A4A1018826)。
文摘A very coarse-grained(335μm)Fe_(41)Mn_(25)Ni_(24)Co_(8)Cr_(2)high-entropy alloy with a single FCC phase was cold rolling to a 80%reduction in thickness using the differential speed rolling technique with various speed ratios(SRs)ranging between 1 and 4.As the SR was increased,the volume fraction of the region of high-density micro-shear bands increased to accommodate the higher shear strain.At SR=4,the entire thickness of the sheet was covered with micro-shear bands,and ultrafine(sub)grains with a size of1.4μm were uniformly formed along the shear bands.A continuous dynamic recrystallization(CDRX)mechanism occurred during rolling,and a higher SR accelerated the CDRX process.During conventional rolling(at SR=1),a brass{110}<112>orientation texture with minor components of S{123}<634>and Cu{112}<111>orientations developed.At higher SRs,shear texture developed as the main type,while the development of rolling texture was suppressed.The microstructure at SR=4 obtained after annealing at973 K showed a fully recrystallized microstructure composed of a five times smaller grain size(4μm)with a higher intensity ofγfiber texture compared with that prepared by conventional rolling.The samples processed with high SRs exhibited better tensile properties compared with the conventionally rolled sample in terms of strength and ductility after annealing.The current results demonstrate that by using differential speed rolling with a high SR,one can achieve a significantly finer and more homogeneous microstructure,stronger shear texture,and superior tensile mechanical properties for an FCC high-entropy alloy compared to that obtained by conventional rolling.The strength of the as-rolled and annealed samples was quantitatively explained by considering the contribution of grain size and dislocation density to strengthening.
基金National Natural Science Foundation of China(No.50975246)
文摘A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.