Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia....Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.展开更多
The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this s...The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.展开更多
This paper examines the effect of ploughing depths (A -- 60 cm, B -- 45 cm and C -- 30 cm) on the growth and yield of Heracleum candicans Wall (Apiaceae), a threatened medicinal herb of the Himalayan region. This ...This paper examines the effect of ploughing depths (A -- 60 cm, B -- 45 cm and C -- 30 cm) on the growth and yield of Heracleum candicans Wall (Apiaceae), a threatened medicinal herb of the Himalayan region. This less-explored plant is being suggested as a potential crop for the mountain agriculture. The study was carried out in an orchard in Himachal Pradesh, India at 2500 m altitude, for two successive growth years. During the first year, all plants remained in juvenile state; in the second year, nearly 65 % plants produced flowers only under 60cm ploughing depth. Among its morphological traits, plant height, collar diameter and aboveground flesh weight were found to be strongly correlated (P 〈 0.01) with the belowground biomass during the first year (r =0.968, 0.925 and 0.973, respectively) and during the second year (r=0.945, 0.928 and 0.775, respectively). Increase in the ploughing depth was significantly correlated (P〈0.01) with all growth parameters, including the belowground dry weight, marketable portion of the produce. The belowground biomass (commercial yield; 16.28 Qt/hec) at depth A was about 2.6 and 4.7 times higher than those recorded at depths B and C, respectively. The results clearly justify the importance of deep ploughing and this paper strongly recommends it for economically sustainable cropping.展开更多
To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including g...To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.展开更多
文摘Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.
基金supported by the Major Special Research projects in Gansu Province, China (22ZD6NA009)the National Key R&D Program of China (2022YFD1900300)+4 种基金the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (GSCS-2022-Z02)the Fostering Foundation for the Excellent Ph.D. Dissertation of Gansu Agricultural University, China (YB2020002)the Innovation Star Project for Excellent Graduate Student of Department of Education of Gansu Province, China (2021CXZX-369)the Young Instructor Fund Project of Gansu Agricultural University, China (GAU-QDFC-2020-03)the Science and Technology Project of Gansu Province, China (20JR5RA033)。
文摘The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.
文摘This paper examines the effect of ploughing depths (A -- 60 cm, B -- 45 cm and C -- 30 cm) on the growth and yield of Heracleum candicans Wall (Apiaceae), a threatened medicinal herb of the Himalayan region. This less-explored plant is being suggested as a potential crop for the mountain agriculture. The study was carried out in an orchard in Himachal Pradesh, India at 2500 m altitude, for two successive growth years. During the first year, all plants remained in juvenile state; in the second year, nearly 65 % plants produced flowers only under 60cm ploughing depth. Among its morphological traits, plant height, collar diameter and aboveground flesh weight were found to be strongly correlated (P 〈 0.01) with the belowground biomass during the first year (r =0.968, 0.925 and 0.973, respectively) and during the second year (r=0.945, 0.928 and 0.775, respectively). Increase in the ploughing depth was significantly correlated (P〈0.01) with all growth parameters, including the belowground dry weight, marketable portion of the produce. The belowground biomass (commercial yield; 16.28 Qt/hec) at depth A was about 2.6 and 4.7 times higher than those recorded at depths B and C, respectively. The results clearly justify the importance of deep ploughing and this paper strongly recommends it for economically sustainable cropping.
基金Project (U0834002) supported by the Key Program of NSFC-Guangdong Joint Funds of ChinaProject (51005079) supported by the National Natural Science Foundation of China+1 种基金Project (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProject (10451064101005146) supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.