期刊文献+
共找到126,900篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing Watershed Vulnerability in Bernalillo County, New Mexico Using GIS-Based Fuzzy Inference 被引量:2
1
作者 Clinton P. Richardson Kofi Amankwatia 《Journal of Water Resource and Protection》 2019年第2期99-121,共23页
Watershed vulnerability was assessed for Bernalillo County, New Mexico using a multi-criteria Fuzzy Inference System (FIS) implemented in a Geographic Information System (GIS). A vulnerability map was produced by mean... Watershed vulnerability was assessed for Bernalillo County, New Mexico using a multi-criteria Fuzzy Inference System (FIS) implemented in a Geographic Information System (GIS). A vulnerability map was produced by means of a weighted overlay analysis that combined soil erosion and infiltration maps derived from the FIS methodology. Five vulnerability classes were stipulated in the model: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The results indicate that about 88% of the study area is susceptible to slight (SV) to moderate vulnerability (MV), with 11% of the area subject to experience high or extreme vulnerability (HV/EV). For land use and land cover (LULC) classifications, shrub land was identified to experience the most vulnerability. Weighted overlay output compared similarly with the results predicted by Revised Universal Soil Loss Equation (RUSLE) model with the exception of the not vulnerable (N) class. The eastern portion of the county was identified as most vulnerable due to its high slope and high precipitation. Herein, structural stormwater control measures (SCMs) may be viable for managing runoff and sediment transport offsite. This multi-criteria FIS/GIS approach can provide useful information to guide decision makers in selection of suitable structural and non-structural SCMs for the arid Southwest. 展开更多
关键词 STORMWATER Control Measures fuzzy inference SYSTEM MULTI-CRITERIA Decision Support Systems GEOGRAPHIC Information SYSTEM
下载PDF
Experimental investigation and adaptive neural fuzzy inference system prediction of copper recovery from flotation tailings by acid leaching in a batch agitated tank 被引量:3
2
作者 Jalil Pazhoohan Hossein Beiki Morteza EsfANDyari 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期538-546,共9页
The potential of copper recovery from flotation tailings was experimentally investigated using a laboratory-mixing tank. The experiments were performed with solid weight percentages of 30 wt%, 35 wt%, 40 wt% and 45 wt... The potential of copper recovery from flotation tailings was experimentally investigated using a laboratory-mixing tank. The experiments were performed with solid weight percentages of 30 wt%, 35 wt%, 40 wt% and 45 wt% in water. The measurements revealed that adding sulfuric acid all at once to the tank rapidly increased the efficiency of the leaching process, which was attributed to the rapid change in the acid concentration. The rate of iron dissolution from tailings was less than when the acid was added gradually. The sample with 40 wt% solid is recommended as an appropriate feed for the recovery of copper. The adaptive neural fuzzy system(ANFIS) was also used to predict the copper recovery from flotation tailings. The back-propagation algorithm and least squares method were applied for the training of ANFIS. The validation data was also applied to evaluate the performance of these models. Simulation results revealed that the testing results from these models were in good agreement with the experimental data. 展开更多
关键词 FLOTATION TAILINGS LEACHING copper environments adaptive neural fuzzy inference system
下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
3
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 ELECTRICITY PRICE Forecasting SHORT-TERM Load Forecasting ELECTRICITY MARKETS Artificial NEURAL Networks fuzzy LOGIC
下载PDF
Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives
4
作者 K. Naga Sujatha K. Vaisakh 《Journal of Intelligent Learning Systems and Applications》 2010年第2期110-118,共9页
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot... A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme. 展开更多
关键词 ANFIS CONTROLLER PI CONTROLLER fuzzy LOGIC CONTROLLER Artificial NEURAL Network CONTROLLER INDUCTION MOTOR Drive
下载PDF
A State Estimation Method for Sound Environment System with Unknown Observation Mechanism by Introducing Fuzzy Inference
5
作者 Hisako Orimoto Akira Ikuta 《Intelligent Information Management》 2012年第4期115-122,共8页
The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specifi... The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment. 展开更多
关键词 State Estimation SOUND Environment SYSTEM UNKNOWN OBSERVATION MECHANISM fuzzy inference
下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
6
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 fuzzy control Identification (control systems) inference engines Learning algorithms Mathematical models Multivariable control systems Neural networks Nonlinear control systems Real time systems
下载PDF
Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference 被引量:4
7
作者 ARTUN Emre KULGA Burak 《Petroleum Exploration and Development》 2020年第2期413-420,共8页
An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and... An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data. 展开更多
关键词 tight gas sands re-fracturing horizontal wells artificial intelligence fuzzy logic fuzzy rule hydraulic fracture quality refracturing potential
下载PDF
Adaptive Fuzzy Sliding Mode Controller for Grid Interface Ocean Wave Energy Conversion
8
作者 Adel A. A. Elgammal 《Journal of Intelligent Learning Systems and Applications》 2014年第2期53-69,共17页
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat... This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions. 展开更多
关键词 GRID integration Wave Energy Conversion Systems Self-Excited Induction Generator (SEIG) Vector CONTROL Genetic Algorithm (GA) Particle SWARM Optimization (PSO) SLIDING Mode CONTROL (SMC) fuzzy Logic CONTROL (FLC) MEMBERSHIP Function Tuning
下载PDF
IoMT-Based Smart Monitoring Hierarchical Fuzzy Inference System for Diagnosis of COVID-19 被引量:1
9
作者 Tahir Abbas Khan Sagheer Abbas +4 位作者 Allah Ditta Muhammad Adnan Khan Hani Alquhayz Areej Fatima Muhammad Farhan Khan 《Computers, Materials & Continua》 SCIE EI 2020年第12期2591-2605,共15页
The prediction of human diseases,particularly COVID-19,is an extremely challenging task not only for medical experts but also for the technologists supporting them in diagnosis and treatment.To deal with the predictio... The prediction of human diseases,particularly COVID-19,is an extremely challenging task not only for medical experts but also for the technologists supporting them in diagnosis and treatment.To deal with the prediction and diagnosis of COVID-19,we propose an Internet of Medical Things-based Smart Monitoring Hierarchical Mamdani Fuzzy Inference System(IoMTSM-HMFIS).The proposed system determines the various factors like fever,cough,complete blood count,respiratory rate,Ct-chest,Erythrocyte sedimentation rate and C-reactive protein,family history,and antibody detection(lgG)that are directly involved in COVID-19.The expert system has two input variables in layer 1,and seven input variables in layer 2.In layer 1,the initial identification for COVID-19 is considered,whereas in layer 2,the different factors involved are studied.Finally,advanced lab tests are conducted to identify the actual current status of the disease.The major focus of this study is to build an IoMT-based smart monitoring system that can be used by anyone exposed to COVID-19;the system would evaluate the user’s health condition and inform them if they need consultation with a specialist for quarantining.MATLAB-2019a tool is used to conduct the simulation.The COVID-19 IoMTSM-HMFIS system has an overall accuracy of approximately 83%.Finally,to achieve improved performance,the analysis results of the system were shared with experts of the Lahore General Hospital,Lahore,Pakistan. 展开更多
关键词 IoMT MERS-COV Ct-chest ESR/CRP ABD(lgG) fuzzy logic HMFIS WHO
下载PDF
Reliability Estimation of Services Oriented Systems Using Adaptive Neuro Fuzzy Inference System
10
作者 Ashish Seth Himanshu Agarwal Ashim Raj Singla 《Journal of Software Engineering and Applications》 2014年第7期581-591,共11页
In order to make system reliable, it should inhibit guarantee for basic service, data flow, composition of services, and the complete workflow. In service-oriented architecture (SOA), the entire software system consis... In order to make system reliable, it should inhibit guarantee for basic service, data flow, composition of services, and the complete workflow. In service-oriented architecture (SOA), the entire software system consists of an interacting group of autonomous services. Some soft computing approaches have been developed for estimating the reliability of service oriented systems (SOSs). Still much more research is expected to estimate reliability in a better way. In this paper, we proposed SoS reliability based on an adaptive neuro fuzzy inference system (ANFIS) approach. We estimated the reliability based on some defined parameter. Moreover, we compared its performance with a plain FIS (fuzzy inference system) for similar data sets and found the proposed approach gives better reliability estimation. 展开更多
关键词 RELIABILITY Estimation SOA fuzzy RULE-BASED RELIABILITY Model SOFT COMPUTING
下载PDF
A Fuzzy Inference System for Increasing of Survivability and Efficiency in Wireless Sensor Networks
11
作者 Rodrigo Augusto R. S. Baluz Raimir Holanda Filho +4 位作者 Jose Victor V. Sobral Aldir S. Sousa Harilton S.Araujo Marcus V. S. Lemos Ricardo A. L. Rabelo 《通讯和计算机(中英文版)》 2013年第5期702-712,共11页
关键词 线
下载PDF
Insulation Diagnosis of Service Aged XLPE Power Cables Using Statistical Analysis and Fuzzy Inference 被引量:1
12
作者 LIU Fei JIANG Pingkai +2 位作者 LEI Qingquan ZHANG Li SU Wenqun 《高电压技术》 EI CAS CSCD 北大核心 2013年第8期1932-1940,共9页
Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging st... Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging state of cables working in special circumstances. We performed multi-parameter tests with samples from about 300 cable lines in Shanghai. The tests included water tree investigation, tensile test, dielectric spectroscopy test, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and electrical aging test. Then, we carried out regression analysis between every two test parameters. Moreover, through two-sample t-Test and analysis of va- riance (ANOVA) of each test parameter, we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively. Furthermore, the test parameters which have strong correlation in the regression analysis or significant differ- ences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state. The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering. Based on the fuzzy in- ference, we established a cable insulation aging diagnosis model using the intensity transfer method. The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases. This validates the rule that the in- crease of microscopic imperfections in solid material enhances the dielectric breakdown strength. The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables. This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations. A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive aging state of cable insulation well, and that the cable service time has no correlation with the insulation aging state. 展开更多
关键词 穿
下载PDF
Probabilistic Fuzzy Approach to Assess RDS Vulnerability and Plan Corrective Action Using Feeder Reconfiguration 被引量:2
13
作者 Mini S Thomas Rakesh Ranjan Roma Raina 《Energy and Power Engineering》 2012年第5期330-338,共9页
Two common problems for a typical Power distribution system are voltage collapse & instability. Challenge is to identify the vulnerable nodes and apply the effective corrective actions. This paper presents a proba... Two common problems for a typical Power distribution system are voltage collapse & instability. Challenge is to identify the vulnerable nodes and apply the effective corrective actions. This paper presents a probabilistic fuzzy approach to assess the node status and proposes feeder reconfiguration as a method to address the same. Feeder reconfiguration is altering the topological structures of distribution feeders by changing the open/closed states of the sectionalizing and ties switches. The solution is converge using a probabilistic fuzzy modeled solution, which defines the nodal vulnerability index (VI) as a function of node voltage and node voltage stability index and predicts nodes critical to voltage collapse. The information is further used to plan best combination of feeders from each loop in distribution system to be switched out such that the resulting configuration gives the optimal performance i.e. best voltage profile and minimal kW losses. The proposed method is tested on established radial distribution system and results are presented. 展开更多
关键词 Branch VOLTAGE Three Phase Load Flow VOLTAGE Stability INDEX (SI) Radial Distribution System (RDS) Monte Carlo Probability Distributions fuzzy Set Node VULNERABILITY Index(VI) FEEDER Reconfiguration
下载PDF
APPLICATION STUDY ON ADAPTIVE NEURAL FUZZY INFERENCE MODEL IN COMPLEX SOCIAL-TECHNICAL SYSTEM
14
作者 冯绍红 李东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期393-399,共7页
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re... The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields. 展开更多
关键词 complex adaptive system adaptive neural fuzzy inference system ANFIS complex social-technical system organizational efficiency
下载PDF
A Decision Support System for Selection of Solar Power Plant Locations by Applying Fuzzy AHP and TOPSIS: An Empirical Study 被引量:3
15
作者 Athakorn Kengpol Piya Rontlaong Markku Tuominen 《Journal of Software Engineering and Applications》 2013年第9期470-481,共12页
The objective of this research is to propose a decision support system for avoiding flood on solar power plant site selection. Methodologically, the geographic information system (GIS) is used to determine the optimum... The objective of this research is to propose a decision support system for avoiding flood on solar power plant site selection. Methodologically, the geographic information system (GIS) is used to determine the optimum site for a solar power plant. It is intended to integrate the qualitative and quantitative variables based upon the adoption of the Fuzzy Analytic Hierarchy Process (Fuzzy AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model. These methods are employed to unite the environmental aspects and social needs for electrical power systematically. Regarding a case study of the choice of a solar power plant site in Thailand, it demonstrates that the quantitative and qualitative criteria should be realized prior to analysis in the Fuzzy AHP-TOPSIS model. The fuzzy AHP is employed to determine the weights of qualitative and quantitative criteria that can affect the selection process. The adoption of the fuzzy AHP is aimed to model the linguistic unclear, ambiguous, and incomplete knowledge. Additionally, TOPSIS, which is a ranking multi-criteria decision making method, is employed to rank the alternative sites based upon overall efficiency. The contribution of this paper lies in the evolution of a new approach that is flexible and practical to the decision maker, in providing the guidelines for the solar power plant site choices under stakeholder needs: at the same time, the desirable functions are achieved, in avoiding flood, reducing cost, time and causing less environmental impact. The new approach is assessed in the empirical study during major flooding in Thailand during the fourth quarter of 2011 to 2012. The result analysis and sensitivity analysis are also presented. 展开更多
关键词 Solar Power Plant Site SELECTION Decision Support System fuzzy ANALYTIC Hierarchy Process (FAHP) Technique for Order PREFERENCE by Similarity to IDEAL Solution (TOPSIS)
下载PDF
Fuzzy Logic Inference Applications in Road Traffic and Parking Space Management
16
作者 Ahmed Tijjani Dahiru 《Journal of Software Engineering and Applications》 2015年第7期339-345,共7页
In modern motoring, many factors are considered to realize driving convenience and achieving safety at a reasonable cost. A drive towards effective management of traffic and parking space allocation in urban centres u... In modern motoring, many factors are considered to realize driving convenience and achieving safety at a reasonable cost. A drive towards effective management of traffic and parking space allocation in urban centres using intelligent software applications is currently being developed and deployed as GPS enabled service to consumers in automobiles or smartphone applications for convenience, safety and economic benefits. Building a fuzzy logic inference for such applications may have numerous approaches such as algorithms in Pascal or C-languages and of course using an effective fuzzy logic toolbox. Referring to a case report based on IrisNet project analysis, in this paper Matlab fuzzy logic toolbox is used in developing an inference for managing traffic flow and parking allocation with generalized feature that is open for modification. Being that modifications can be done within any or all among the tool’s universe of discourse, increment in the number of membership functions and changing input and output variables etc, the work here is limited within changes at input and output variables and bases of universe of discourse. The process implications is shown as plotted by the toolbox in surface and rule views, implying that the inference is flexibly open for modifications to suit area of application within reasonable time frame no matter how complex. The travel time to the parking space being an output variable in the current inference is recommended to be substituted with distance to parking space as the former is believed to affect driving habits among motorist, whom may require the inference to as well cover other important locations such as nearest or cheapest gas station, hotels, hospitals etc. 展开更多
关键词 fuzzy Logic inference UNIVERSE of DISCOURSE MEMBERSHIP Functions PARKING Space Traffic Simulations Surface VIEWS Rule VIEWS
下载PDF
An Adaptive Learning Method for the Generation of Fuzzy Inference System from Data 被引量:6
17
作者 ZHANG Li-Quan SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2008年第1期80-87,共8页
Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and syste... Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and system rules are defined as specific structures.Second,to speed up the convergence of the learning algorithm and lighten the oscillation,an improved descent method for FIS generation is developed.Furthermore, the convergence and the oscillation of the algorithm are system- atically analyzed.Third,using the information obtained from the previous phase,it can be decided in which region of the in- put space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased.Consequently,this produces a new and more appropriate structure.Finally,the proposed method is applied to the problem of nonlinear function approximation. 展开更多
关键词 线
下载PDF
Prediction of subsidence risk by FMEA using artificial neural network and fuzzy inference system 被引量:12
18
作者 Rafie Meraj Samimi Namin Farhad 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期655-663,共9页
Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (F... Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (FMEA) and fuzzy inference system (FIS). Fuzzy theory will be able to model uncertainties. Fuzzy FMEA provides a tool that can work in a better way with vague concepts and without sufficient informa- tion than conventional FMEA. In this paper, S and D are obtained from fuzzy rules and 0 is obtained from artificial neural network (ANN). FMEA is performed by developing a fuzzy risk priority number (FRPN). The FRPN for two stations in Tehran No.4 subway line is 3.1 and 5.5, respectively. To investigate the suit- ability of this approach, the predictions by FMEA have been compared with actual data. The results show that this method can be useful in the prediction of subsidence risk in urban tunnels. 展开更多
关键词 Subsidence risk Geotechnical uncertainty FMEA ANN fuzzy Tehran No.4 subway line
下载PDF
Hybridization of Differential Evolution and Adaptive-Network-Based Fuzzy Inference Systemin Estimation of Compression Coefficient of Plastic Clay Soil
19
作者 Manh Duc Nguyen Ha NguyenHai +4 位作者 Nadhir Al-Ansari MahdisAmiri Hai-Bang Ly Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期149-166,共18页
One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML... One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures. 展开更多
关键词 Compression coefficient differential evolution adaptive-network-based fuzzy inference system machine learning VIETNAM
下载PDF
DiagData: A Tool for Generation of Fuzzy Inference System
20
作者 Silvia Maria Fonseca Silveira Massruha Raphael Fuini Riccioti Helano Povoas Lima Carlos Alberto AlvesMeira 《Journal of Environmental Science and Engineering(B)》 2012年第3期336-343,共8页
In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In... In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In this approach, techniques of data mining are used to extract knowledge from existing data. The data is extracted in the form of rules that are used in the development of a predictive intelligent system. Currently, the specification of these rules is built by an expert or data mining. When data mining on a large database is used, the number of generated rules is very complex too. The main goal of this work is minimize the rule generation time. The proposed tool, called DiagData, extracts knowledge automatically or semi-automatically from a database and uses it to build an intelligent system for disease prediction. In this work, the decision tree learning algorithm was used to generate the rules. A toolbox called Fuzzygen was used to generate a prediction system from rules generated by decision tree algorithm. The language used to implement this software was Java. The DiagData has been used in diseases prediction and diagnosis systems and in the validation of economic and environmental indicators in agricultural production systems. The validation process involved measurements and comparisons of the time spent to enter the rules by an expert with the time used to insert the same rules with the proposed tool. Thus, the tool was successfully validated, providing a reduction of time. 展开更多
关键词 Prediction modelling data mining decision tree machine learning fuzzy inference system fuzzygen.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部