Aimed at the disadvantages of secondary damage to oil layers caused by the conventional bull-heading water control technique, a thermo-sensitive temporary plugging agent for water control was synthesized by water solu...Aimed at the disadvantages of secondary damage to oil layers caused by the conventional bull-heading water control technique, a thermo-sensitive temporary plugging agent for water control was synthesized by water solution polymerization and applied in the field with a new secondary temporary plugging technique. The optimization and performance evaluation of thermo-sensitive temporary plugging agent were carried out through laboratory experiments. The optimized formula is as follows:(6%-8%) acrylamide +(0.08%-0.12%) ammonium persulfate +(1.5%-2.0%) sepiolite +(0.5%-0.8%) polyethylene glycol diacrylate. The thermo-sensitive temporary plugging agent is suitable for formation temperatures of 70-90 ?C, it has high temporary plugging strength(5-40 k Pa), controllable degradation time(1-15 d), the apparent viscosity after degradation of less than 100 m Pa?S and the permeability recovery value of simulated cores of more than 95%. Based on the research results, secondary temporary plugging technique was used in a horizontal well in the Jidong Oilfield. After treatment, the well saw a drop of water cut to 27%, and now it has a water cut of 67%, its daily increased oil production was 4.8 t, and the cumulative oil increment was 750 t, demonstrating that the technique worked well in controlling water production and increasing oil production.展开更多
Based on the practices of construction supervision to cement grouting at the reservoir emptying and power tunnels of the TSQ stage Ⅰ Hydropower station, some issues on quality control of cement grouting of hydraulic ...Based on the practices of construction supervision to cement grouting at the reservoir emptying and power tunnels of the TSQ stage Ⅰ Hydropower station, some issues on quality control of cement grouting of hydraulic tunnel are discussed, and corresponding suggestions are put forward for revision of current standard (SL62-94). It is regarded that the refilling grouting could not be used for remedying the thickness of concrete lining; the end sealing of refilling grouting section should not be neglected; higher grouting pressure would be used. For the consolidation grouting, grout return pipe should be placed at the grout hole top for pure pressure type grouting; five-grade water cement ratio of grout mix is suggested; a certain standard should be specified for changing the grout to thicker mix by skipping the intermediate grade; the standard for ending the grouting should be relaxed. In current grouting standard, some terms should be complemented for contact grouting of steel penstock and spiral case and for plug grouting of circular-anchor hole.展开更多
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone...A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.展开更多
Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the me...Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life.展开更多
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee...Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments.展开更多
In order to improve the plugging and anti-collapse performance of water-based drilling fluid,a polymer film-forming plugging agent LWFD is synthesized by emulsion polymerization.The effect of the agent on rheology,API...In order to improve the plugging and anti-collapse performance of water-based drilling fluid,a polymer film-forming plugging agent LWFD is synthesized by emulsion polymerization.The effect of the agent on rheology,API filtration loss,lubricity and film plugging of polymer drilling fluid and cationic drilling fluid is evaluated in laboratory.The experimental results show that the agent has little effect on the rheology and filtration loss of polymer drilling fluid and cationic drilling fluid,and can improve the lubricity of drilling fluid.The synthesized polymer film-forming plugging agent LWFD has good plugging properties for sand discs with different permeabilities,and the agent can effectively improve the film-forming plugging and temperature resistance of drilling fluid when combined with the inorganic nano-plugging agent NMFD.The high performance polymer drilling fluid formed by introducing polymer film-forming plugging agent LWFD and inorganic nano-plugging agent NMFD into polymer drilling fluid has comparable performance as Halliburton’s SHALEDRIL high performance drilling fluid,which can meet the requirements of on-site drilling and has application value.展开更多
基金Supported by the National Key Special Science and Technology Project(2016ZX05015-002)PetroChina Key Special Science and Technology Project(2016E-0104)
文摘Aimed at the disadvantages of secondary damage to oil layers caused by the conventional bull-heading water control technique, a thermo-sensitive temporary plugging agent for water control was synthesized by water solution polymerization and applied in the field with a new secondary temporary plugging technique. The optimization and performance evaluation of thermo-sensitive temporary plugging agent were carried out through laboratory experiments. The optimized formula is as follows:(6%-8%) acrylamide +(0.08%-0.12%) ammonium persulfate +(1.5%-2.0%) sepiolite +(0.5%-0.8%) polyethylene glycol diacrylate. The thermo-sensitive temporary plugging agent is suitable for formation temperatures of 70-90 ?C, it has high temporary plugging strength(5-40 k Pa), controllable degradation time(1-15 d), the apparent viscosity after degradation of less than 100 m Pa?S and the permeability recovery value of simulated cores of more than 95%. Based on the research results, secondary temporary plugging technique was used in a horizontal well in the Jidong Oilfield. After treatment, the well saw a drop of water cut to 27%, and now it has a water cut of 67%, its daily increased oil production was 4.8 t, and the cumulative oil increment was 750 t, demonstrating that the technique worked well in controlling water production and increasing oil production.
文摘Based on the practices of construction supervision to cement grouting at the reservoir emptying and power tunnels of the TSQ stage Ⅰ Hydropower station, some issues on quality control of cement grouting of hydraulic tunnel are discussed, and corresponding suggestions are put forward for revision of current standard (SL62-94). It is regarded that the refilling grouting could not be used for remedying the thickness of concrete lining; the end sealing of refilling grouting section should not be neglected; higher grouting pressure would be used. For the consolidation grouting, grout return pipe should be placed at the grout hole top for pure pressure type grouting; five-grade water cement ratio of grout mix is suggested; a certain standard should be specified for changing the grout to thicker mix by skipping the intermediate grade; the standard for ending the grouting should be relaxed. In current grouting standard, some terms should be complemented for contact grouting of steel penstock and spiral case and for plug grouting of circular-anchor hole.
基金Project(51378309)supported by National Natural Science Foundation of China
文摘A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.
基金Supported by the National Natural Science Foundation of China(51774307).
文摘Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life.
基金financially supported by the National Natural Science Foundation of China(Grant No.52150410427)the Key Support Program for Foreign Experts of the Ministry of Science and Technology of the People's Republic of China(No.wgxz2022057)funding for post-doctoral work by the Department of Human Resources and Social Security of Hubei Province。
文摘Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments.
基金Project of National Natural Science Foundation of China“Research on Shale Wellbore Stability and Fracture Mechanism under Shale Gas Development Conditions”(51174036).
文摘In order to improve the plugging and anti-collapse performance of water-based drilling fluid,a polymer film-forming plugging agent LWFD is synthesized by emulsion polymerization.The effect of the agent on rheology,API filtration loss,lubricity and film plugging of polymer drilling fluid and cationic drilling fluid is evaluated in laboratory.The experimental results show that the agent has little effect on the rheology and filtration loss of polymer drilling fluid and cationic drilling fluid,and can improve the lubricity of drilling fluid.The synthesized polymer film-forming plugging agent LWFD has good plugging properties for sand discs with different permeabilities,and the agent can effectively improve the film-forming plugging and temperature resistance of drilling fluid when combined with the inorganic nano-plugging agent NMFD.The high performance polymer drilling fluid formed by introducing polymer film-forming plugging agent LWFD and inorganic nano-plugging agent NMFD into polymer drilling fluid has comparable performance as Halliburton’s SHALEDRIL high performance drilling fluid,which can meet the requirements of on-site drilling and has application value.