An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accu- rately determining the landing site of CE-3 and anal...An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accu- rately determining the landing site of CE-3 and analyzing the geological background of the landing site. Due to complexities involved in the landing process, there are some differences between the planned trajectory and the actual trajectory of CE-3. The land- ing camera on CE-3 recorded a sequence of the landing process with a frequency of 10 frames per second. These images recorded by the landing camera and high-resolution images of the lunar surface are utilized to calculate the position of the probe, so as to reconstruct its precise trajectory. This paper proposes using the method of trajectory reconstruction by Single Image Space Resection to make a detailed study of the hov- ering stage at a height of 100 m above the lunar surface. Analysis of the data shows that the closer CE-3 came to the lunar surface, the higher the spatial resolution of im- ages that were acquired became, and the more accurately the horizontal and vertical position of CE-3 could be determined. The horizontal and vertical accuracies were 7.09 m and 4.27 m respectively during the hovering stage at a height of 100.02 m. The reconstructed trajectory can reflect the change in CE-3's position during the powered descent process. A slight movement in CE-3 during the hovering stage is also clearly demonstrated. These results will provide a basis for analysis of orbit control strategy, and it will be conducive to adjustment and optimization of orbit control strategy in follow-up missions.展开更多
Due to the low spatial resolution of images taken from the Chang'e-1 (CE-I) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD...Due to the low spatial resolution of images taken from the Chang'e-1 (CE-I) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high- resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.展开更多
High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffract...High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm^2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.展开更多
The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can b...The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.展开更多
An algorithm was developed for identifying and tracking a magnetic bright point, or bright point (BP) for short, observed in both the photosphere (G-band) and chromosphere (Ca II H), as well as for pairing a pho...An algorithm was developed for identifying and tracking a magnetic bright point, or bright point (BP) for short, observed in both the photosphere (G-band) and chromosphere (Ca II H), as well as for pairing a photospheric BP (PBP) with its conjugate chromospheric BP (CBP). Two sets of data observed by Hinode/SOT in the quiet Sun near the disk center were analyzed. About 278 PBP-CBP pairs were identified and tracked. Lifetimes of both the PBPs and CBPs follow an exponential distribution with average lifetimes of 174 s and 163 s, respectively. We found that the differences in appearance time, in disappearance time and in lifetime of the two kinds of BPs all follow Gaussian distributions,which may indicate that the mechanisms of PBP and CBP formation/disintegration are different. However, the lifetimes of PBPs and CBPs are positively correlated with one another, with a correlation coefficient of 0.8. Furthermore, we calculated the horizontal displacement between the PBP and its conjugate CBP, which follows a Gaussian function with an average and standard deviation of (67.7 ± 38.5)km. We also calculated the amplitude of the flux tube shape change which might be caused by MHD waves propagating along the flux tube, and found that it follows an exponential distribution very well.展开更多
With the development of large-scale spectral surveys, fiber positioning technology has been developing rapidly. Because of the performance advantages of a four-quadrant(4Q) detector, a fiber positioning and real-tim...With the development of large-scale spectral surveys, fiber positioning technology has been developing rapidly. Because of the performance advantages of a four-quadrant(4Q) detector, a fiber positioning and real-time monitoring system based on the 4Q detector is proposed. The detection accuracy of this system is directly determined by the precision of the center of the spot. A Gaussian fitting algorithm based on the 4Q detector is studied and applied in the fiber positioning process to improve the calculated accuracy of the spot center. The relationship between the center position of the incident spot and the detector output signal is deduced. An experimental platform is built to complete the simulated experiment. Then we use the Gaussian fitting method to process experimental data, compare the fitting value with the theoretical one and calculate the corresponding error.展开更多
The wide field of the Schmidt telescope implies a greater chance of the field containing bright objects, and the presence of a corrector lens produces a certain type of ghost images. We summarize and confirm the featu...The wide field of the Schmidt telescope implies a greater chance of the field containing bright objects, and the presence of a corrector lens produces a certain type of ghost images. We summarize and confirm the features of such ghost images in Schmidt CCD photometry. The ghost images could be star-like under special observational conditions. The zenith distance of the telescope, among other factors, is found to correlate with different patterns of the ghost images. Some relevant issues are discussed and possible applications of our results are suggested.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stabilit...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2 nd Version(RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-frameworkbased control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.展开更多
The Solar Guide Telescope (SGT), an important solar attitude sensor of theSST (Space Solar Telescope, a space solar observing instrument being developed in China), canaccurately produce pointing error signals of the S...The Solar Guide Telescope (SGT), an important solar attitude sensor of theSST (Space Solar Telescope, a space solar observing instrument being developed in China), canaccurately produce pointing error signals of the SST for attitude control at high speed. We analyzein detail the error algorithm of the heliocentric coordinates and the edge judging of solar images.The measuring accuracy of +- 0.5 arcsec of the SGT is verified by experiments on the tracking of theSun and by testing a sun simulator. Some factors causing the pointing errors are examined.展开更多
High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their b...High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light mod- ulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coron- agraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5A/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.展开更多
基金Supported by the National Natural Science Foundation of China
文摘An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accu- rately determining the landing site of CE-3 and analyzing the geological background of the landing site. Due to complexities involved in the landing process, there are some differences between the planned trajectory and the actual trajectory of CE-3. The land- ing camera on CE-3 recorded a sequence of the landing process with a frequency of 10 frames per second. These images recorded by the landing camera and high-resolution images of the lunar surface are utilized to calculate the position of the probe, so as to reconstruct its precise trajectory. This paper proposes using the method of trajectory reconstruction by Single Image Space Resection to make a detailed study of the hov- ering stage at a height of 100 m above the lunar surface. Analysis of the data shows that the closer CE-3 came to the lunar surface, the higher the spatial resolution of im- ages that were acquired became, and the more accurately the horizontal and vertical position of CE-3 could be determined. The horizontal and vertical accuracies were 7.09 m and 4.27 m respectively during the hovering stage at a height of 100.02 m. The reconstructed trajectory can reflect the change in CE-3's position during the powered descent process. A slight movement in CE-3 during the hovering stage is also clearly demonstrated. These results will provide a basis for analysis of orbit control strategy, and it will be conducive to adjustment and optimization of orbit control strategy in follow-up missions.
基金funded by the National Natural Science Foundation of China (Grant No. 51575388)
文摘Due to the low spatial resolution of images taken from the Chang'e-1 (CE-I) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high- resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.
基金Supported by the National Natural Science Foundation of China.
文摘High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm^2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.
基金supported by the National 863 Foundation under grant 863-2.5.1.25.
文摘The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.
基金supported by the CAS grants(XDA17010507,XDA15010900 and QYZDJ-SSWSLH012)the NationalBasic Research Program of China(973 Program,2013CBA01503)+1 种基金the National Natural Science Foundation of China(Grant Nos.U1631130,11333007 and 11763004)supported by a grant associated with the Project of the Group for Innovation of Yunnan Province
文摘An algorithm was developed for identifying and tracking a magnetic bright point, or bright point (BP) for short, observed in both the photosphere (G-band) and chromosphere (Ca II H), as well as for pairing a photospheric BP (PBP) with its conjugate chromospheric BP (CBP). Two sets of data observed by Hinode/SOT in the quiet Sun near the disk center were analyzed. About 278 PBP-CBP pairs were identified and tracked. Lifetimes of both the PBPs and CBPs follow an exponential distribution with average lifetimes of 174 s and 163 s, respectively. We found that the differences in appearance time, in disappearance time and in lifetime of the two kinds of BPs all follow Gaussian distributions,which may indicate that the mechanisms of PBP and CBP formation/disintegration are different. However, the lifetimes of PBPs and CBPs are positively correlated with one another, with a correlation coefficient of 0.8. Furthermore, we calculated the horizontal displacement between the PBP and its conjugate CBP, which follows a Gaussian function with an average and standard deviation of (67.7 ± 38.5)km. We also calculated the amplitude of the flux tube shape change which might be caused by MHD waves propagating along the flux tube, and found that it follows an exponential distribution very well.
基金support by the Fundamental Research Funds for the Central Universities of China (2013/B15020271)the National Natural Science Foundation of China (1014/515029111)the National Undergraduate Training Program for Innovation and Entrepreneurship (201610294069)
文摘With the development of large-scale spectral surveys, fiber positioning technology has been developing rapidly. Because of the performance advantages of a four-quadrant(4Q) detector, a fiber positioning and real-time monitoring system based on the 4Q detector is proposed. The detection accuracy of this system is directly determined by the precision of the center of the spot. A Gaussian fitting algorithm based on the 4Q detector is studied and applied in the fiber positioning process to improve the calculated accuracy of the spot center. The relationship between the center position of the incident spot and the detector output signal is deduced. An experimental platform is built to complete the simulated experiment. Then we use the Gaussian fitting method to process experimental data, compare the fitting value with the theoretical one and calculate the corresponding error.
基金The work is partially supported by the Chinese National Natural Science Foundation under the grant No. 10073012The operation of the NAOC Schmidt telescope is supported by the Chinese Academy of Sciencesthe Chinese National Natural Science Foundation
文摘The wide field of the Schmidt telescope implies a greater chance of the field containing bright objects, and the presence of a corrector lens produces a certain type of ghost images. We summarize and confirm the features of such ghost images in Schmidt CCD photometry. The ghost images could be star-like under special observational conditions. The zenith distance of the telescope, among other factors, is found to correlate with different patterns of the ghost images. Some relevant issues are discussed and possible applications of our results are suggested.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFE0100300)the Joint Research Fund in Astronomy(Grant Nos.U1531132,U1631129 and U1231205)under cooperative agreement between the National Natural Science Foundation of China(NSFC)+1 种基金the Chinese Academy of Sciences(CAS)the National Natural Science Foundation of China(Grant Nos.11603044,11703044,11503042,11403009and 11463003)
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2 nd Version(RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-frameworkbased control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.
基金funded by National 863 Hi-tech Project of China.
文摘The Solar Guide Telescope (SGT), an important solar attitude sensor of theSST (Space Solar Telescope, a space solar observing instrument being developed in China), canaccurately produce pointing error signals of the SST for attitude control at high speed. We analyzein detail the error algorithm of the heliocentric coordinates and the edge judging of solar images.The measuring accuracy of +- 0.5 arcsec of the SGT is verified by experiments on the tracking of theSun and by testing a sun simulator. Some factors causing the pointing errors are examined.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA04070600)the National Natural Science Foundation of China(Grant Nos.11003031 and 10873024)+1 种基金as well as the National Astronomical Observatories' Special Fund for Astronomy-2009Part of the work described in this paper was carried out at California State University Northridge,with support from the National Science Foundation under Grant ATM-0841440
文摘High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light mod- ulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coron- agraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5A/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.