The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a we...The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a wedge with radiation.The governing equations are transformed into ordinary differential equations by using similarity variables.The analytical solutions of the transformed governing equations are obtained by using the RK 4th order method along with shooting technique solver.The effects of various physical parameters such as Hartmann number,local Weissenberg number,radiation parameter,unsteadiness parameter,Prandtl number,Lewis number,Brownian diffusion,thermophoresis,wedge angle parameter,moving wedge parameter,on velocity,temperature,concentration,skin friction,heat transfer rate and mass transfer rate have been discussed in detail.The velocity and temperature profile deprives for larger We and an opposite trend is observed for concentration.The radiation parameter is propositional to temperature and a counter behaviour is observed for Pr.展开更多
In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom...In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60°C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes.展开更多
Presented in this manuscript are conventional electrical engineering tools to model the earth as a rotating electrical machine. Calculations using known parameters of the earth and measured field data has resulted in ...Presented in this manuscript are conventional electrical engineering tools to model the earth as a rotating electrical machine. Calculations using known parameters of the earth and measured field data has resulted in new understanding of the earth’s electrical system and gyroscopic rotation. The material makeup of the inner earth is better understood based on derived permeability and permittivity constants. The planet has been modeled as simple coils and then as a parallel impedance circuit which has led to fundamental insight into planetary speed control and RLC combination for Schumann Resonance of 7.83 Hz. Torque and Voltage Constants and the inverse Speed Constant are calculated using three methods and all compare favorably with Newton’s Gravitational Constant. A helical resonator is referenced and Schumann’s Resonant ideal frequency is calculated and compared with others idealism. A new theory of gravity based on particle velocity selector at the poles is postulated. Two equations are presented as the needed links between Faraday’s electromagnetism and Newtonian physics. Acceleration and Deceleration of earth is explained as a centripetal governor. A new equation for planetary attraction and the attraction of atomic matter is theorized. Rotation of the earth’s electrical coil is explained in terms of the Richardson effect. Electric power transfer from the sun to the planets is proposed via Flux Transfer Events. The impact of this evolving science of electromagnetic modeling of planets will be magnified as the theory is proven, and found to be useful for future generations of engineers and scientists who seek to discover our world and other planets.展开更多
An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equatio...An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equations are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (ζ), Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the plate (γ = 70 degrees), flow velocity (f') is strongly increased i.e. accelerated, with thermal buoyancy force parameter (ζ), in particular closer to the plate surface;further into the boundary layer, ζ has a much reduced effect. Conversely temperature (θ) and concentration (ψ) is decreased with increasing thermal buoyancy parameter, ζ. For negative plate inclination, the flow is accelerated whereas for positive inclination it is decelerated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concentration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts temperatures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at intermediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret number cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex-1/2 with ζ Cos γ, for N = -1 the local Nusselt number remains constant for all values of parameter, ζ Cos γ. Local Sherwood number, ShxRex-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The computations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. (1980).展开更多
By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreadi...By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreading heat flow may occur inside the rods when the sample is a composite having different thermal conductivities. In order to investigate the thermal resistance due to the constriction/spreading heat flow, the three-dimensional numerical analyses were conducted on the heat transfer characteristics of the rods. In the present analyses, a polymer-based composite board having thermal vias was sandwiched between the rods. From the numerical results, it was confirmed that the constriction/spreading resistance of the rods was strongly affected by the thermal conductivity of the rods as well as the number and size of the thermal vias. A simple equation was also proposed to evaluate the constriction/spreading resistance of the rods. Fairly good agreements were obtained between the numerical results and the calculated ones by the simple equation. Moreover, the discussion was also made on an effective thermal conductivity of the composite board evaluated with the heated and the cooled rod.展开更多
We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number approximation. The governing equations are solved analytical...We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number approximation. The governing equations are solved analytically with the appropriate boundary conditions by using perturbation technique. The formula of velocity with temperature and concentration is obtained analytically as a function of the physical parameters of the problem.展开更多
One of the methods for calculating electromagnetic wave dispersion in multi-layer structures is the transfer matrix method. In this paper, we use the transfer matrix method for second harmonic generation in a nonlinea...One of the methods for calculating electromagnetic wave dispersion in multi-layer structures is the transfer matrix method. In this paper, we use the transfer matrix method for second harmonic generation in a nonlinear multilayer structure. The nonlinear photonic crystals investigated in this paper are as one-dimensional multi-layered structures including ferroelectric materials such as LiTaO3. Our goal is to investigate the effect of the disorder on the transmission spectrum of electromagnetic waves. Our results showed that positional disorder has different effects on the transmitting band and the gap band. The disorder in the transmitting band reduces the transmission coefficient of the waves and increases the transmission coefficient of the waves in the gap band. Such work has not yet been done on nonlinear photonic crystals producing the second harmonic.展开更多
The H^++CO2 reaction at high energies is relevant in atmospheric chemistry,astrophysics,and proton cancer therapy research.Therefore,we present herein a complete investigation of H^++CO2 at ELab=30 eV with the simples...The H^++CO2 reaction at high energies is relevant in atmospheric chemistry,astrophysics,and proton cancer therapy research.Therefore,we present herein a complete investigation of H^++CO2 at ELab=30 eV with the simplest-level electron nuclear dynamics(SLEND)method.SLEND describes nuclei via classical mechanics and electrons with a singledeterminantal Thouless wavefunction.The 3402 SLEND conducted simulations from 42 independent CO2 target orientations provide a full description of all the reactive processes and their mechanisms in this system:non-charge-transfer scattering(NCTS),charge-transfer scattering(CTS),and single C=O bond dissociation;all this valuable information about reactivity is not accessible experimentally.Numerous details of the projectile scattering patterns are provided,including the appearance and coalescence of primary and secondary rainbow angles as a function of the target orientation.SLEND NCTS and CTS differential cross sections(DCSs)are evaluated in conjunction with advanced semi-classical techniques.SLEND NCTS DCS agrees well with its experimental counterpart at all the measured scattering angles,whereas SLEND CTS DCS agrees well at high scattering angles but less satisfactorily at lower ones.Remarkably,both NCTS and CTS SLEND DCSs predict the primary rainbow angle signatures in agreement with the experiment.展开更多
The effects of mass transfer and physical properties upon the thinning and rupture of adraining plane parallel film are investigated.An equation is derived in which the thinning rate is afunction of bulk properties.su...The effects of mass transfer and physical properties upon the thinning and rupture of adraining plane parallel film are investigated.An equation is derived in which the thinning rate is afunction of bulk properties.surface properties(surface tension,surface viscosities,and the variationof surface tension with surface concentration),intermolecular forces(London-van der Waals forcesand electrostatic double layer forces),adsorption and surface diffusion coefficients,bubble size andfilm thickness.An estimation for the critical thickness at which a film rupture is carried out and thecoalescence time is obtained by integration to the critical thickness,The coalescence time is predictedas a function of bulk and surface properties,London-van der forces,adsorption and surfacediffusion coefficients,and bubble size.展开更多
It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the reso...It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the resonator. Recent studies on of the relay effect of the WPT allow more distant and flexible energy transmission. These new developments hold a promise to construct a fully wireless Body Sensor Network (wBSN) using the new mid-range WPT theory. In this paper, a general optimization strategy for a WPT network is presented by analysis and simulation using the coupled mode theory. Based on the results of theoretical and computational study, two types of thin-film resonators are designed and prototyped for the construction of wBSNs. These resonators and associated electronic components can be integrated into a WPT platform to permit wireless power delivery to multiple wearable sensors and medical implants on the surface and within the human body. Our experiments have demonstrated the feasibility of the WPT approach.展开更多
Construction employees could experience occupational psychological disorders, such as workaholism and burnout due to their work, personality characteristics or lifestyle. This study sought to explore the effects of ps...Construction employees could experience occupational psychological disorders, such as workaholism and burnout due to their work, personality characteristics or lifestyle. This study sought to explore the effects of psychological disorders on construction employees and the construction industry. To achieve this aim, both the methods of focus group discussions and survey questionnaire were employed. The focus group discussions revealed 17 potential effects and 12 potential effects of psychological disorders on the construction employees and the construction industry respectively. A quantitative study was then employed to determine the key effects and to test the reliability of the findings from the focus group study. The results revealed that the highly perceived effects of psychological disorders on construction employees were accident-prone, chronic pain, insomnia or sleep disturbances, as these had the highest mean scores. The key effects also identified as perceived effects of construction employees’ psychological health conditions on the construction industry were: absenteeism/sick leave, errors in work, job dissatisfaction and increased medical costs. Exploratory factor analysis was employed, and the 17 effects on construction employees were categorized under behavioural effects and physiological effects. The 12 effects on the construction industry were also categorized under direct costs and indirect costs. The results from this study confirm the need for strategic interventions to mitigate the effects of occupational psychological disorders on construction employees and the construction industry of Ghana and to some extent globally. The exploratory nature of the study using preliminary findings from focus group discussions contributes to the literature on occupational health psychology.展开更多
Magnetohydrodynamic (MHD) effect and heat transfer are two key issues for design of dual coolant lead lithium (DCLL) blanket. Flow channel insert (FCI) has been applied to decouple the liquid metal from the walls to e...Magnetohydrodynamic (MHD) effect and heat transfer are two key issues for design of dual coolant lead lithium (DCLL) blanket. Flow channel insert (FCI) has been applied to decouple the liquid metal from the walls to efficiently decline MHD pressure drops and reduce heat losses from the liquid metal for increasing bulk exit temperatures of the blanket. However, there are still big pressure drops and a higher velocity jet located at the gap flow. Moreover, the FCI made from silicon carbide (SiC) constitutes a complex blanket structures which potentially causes special flow phenomena. In the present work, the characteristics of fluid flow and heat transfer in the DCLL blanket channel are investigated for the first wall (FW) sprayed a layer of no-wetting nano coating (NWNC) on its inner surface. The results show that the pressure drop with NWNC wall is oneorder magnitude lower than that with FCI in the general DCLL blanket. The Nusselt number on the NWNC wall is about half of that on the general wall. On this basis, a heat transfer criterion equation of DCLL channel is achieved for the NWNC wall without FCI. The results are compared with that criterion equation of general wall conditions, which indicates the criterion equation can well predict the convection heat transfer of DCLL channel.展开更多
Suzhou Industry Garden is one of the few areas which attract foreign capital on a large scale in China. Its construction will bring effects on regional economy obviously. First, the garden as an important part of the ...Suzhou Industry Garden is one of the few areas which attract foreign capital on a large scale in China. Its construction will bring effects on regional economy obviously. First, the garden as an important part of the construction of high tech industry belt between Shanghai and Nanjing will become the radiating source and core area in the course of development of high tech industrialization in the southern area of the Changjiang (Yangtze) River. Second, the garden will influence the development of Taicang City, the door port city of Suzhou, and the development of peripheral villages and towns as well. As Taicang City is being constructed as the assistant center for International Shipping Centre in Shanghai, the structure of double nucleus by which Suzhou and Taicang could benefit from each other will come into being. Third, the garden which has been formed as the unique area for introducing foreign managing mode as a whole will be made the base for demonstration and using international economic management experience for reference.展开更多
This study aims to understand the in-service training needs,training transfer,and training effectiveness of teachers in local normal universities in China,while also proposing a continuous professional development pla...This study aims to understand the in-service training needs,training transfer,and training effectiveness of teachers in local normal universities in China,while also proposing a continuous professional development plan for teachers.Descriptive research methods were employed,with questionnaires serving as the primary data collection tool.The survey revealed that the educational background of teachers in local normal universities is characterized by an unreasonable distribution of academic qualifications,with a shortage of teachers holding postgraduate and higher degrees.Additionally,the training effectiveness for female teachers was found to be lower than that of male teachers.There is a lack of personalization in training needs,which tends to be more generalized.The transfer effect of training is moderate,and there is a need for further enhancement at the behavioral level of training effectiveness.A continuous professional development plan for teachers has been formulated to improve training effectiveness and promote professional development.展开更多
In order to reduce east--west section area of “digital divider” in China, Ministry of Culture laun- ches the National Cultural Information Resources Sharing Project in the mid-west provinces, and the state finance g...In order to reduce east--west section area of “digital divider” in China, Ministry of Culture laun- ches the National Cultural Information Resources Sharing Project in the mid-west provinces, and the state finance gives certain funds subsidy in the project construction period. Embarks highly from strategy during construction plan chosen and operational system management, as while as union digital library to construct a persistent effect mechanism. With the principle of state guidance, enterprise operation and benefit farmers, expand culture industry within the provincial and safeguard Cultural Information Resources Sharing Project sustainable development's, then promotes the rural economy culture full scale development.展开更多
in recent years research investigating various health benefits of Taiji practice has markedly increased. Despite this growing scientific interest, essential questions such as to what extent a Taiji course may exert no...in recent years research investigating various health benefits of Taiji practice has markedly increased. Despite this growing scientific interest, essential questions such as to what extent a Taiji course may exert noticeable effects in participants' everyday life, what these effects are, and how and where potential transfer effects occur, have hardly been considered. The aim of our study was to explore transfer effects from a Taiji course into participants' daily lives. METHODS: We conducted a longitudinal observational study in 45 healthy participants at the end of their three-month Taiji beginner course (tpl) and at two months (tp2) as well as one year after course completion (tp3). Participants were asked to report their Taiji practice behavior at all time points, as well as to rate and describe perceived transfer effects of Taiji course contents on their daily life at tpl and tp3. RESULTS: Transfer effects were reported by 91.1% of all respondents after course completion (tpl) and persisted in 73.3% at the one-year follow-up assessment (tp3), counting "increase of self-efficacy", "improvement of stress management", and "increase of body awareness" as the most frequently mentioned effects. Transfer effects predominantly occurred in participants' work and social environments, as well as during everyday activities in public areas. While self- reliant Taiji practice frequency significantly decreased from 82.2% at tpl to 55.6% at tp3 (P 〈 0.001), the magnitude of self-reported transfer effects did not (P = 0.35). As explorative analyses revealed, regular Taiji course attendance was highly correlated with stronger transfer effects at tpl (r = 0.51; P 〈 0.001) and tp3 (r = 0.35; P = 0.020). Participants reporting high self-reliant Taiji practice frequency at tp2 were likely to maintain a regular practice routine at tp3 (r = 0.42; P 〈 0.004), whereas self-reliant practice frequency and transfer effects at tpl were positively correlated with self-reliant practice frequency at tp3 on a trend level (r 〈 0.27; P 〉 0.08). CONCLUSION: Our data underline the importance of regular course participation for pronounced and long lasting transfer effects into participants' everyday life. We discuss that several context and process-related aspects of a Taiji intervention are potentially relevant factors for enhancement of transfer effect.展开更多
文摘The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a wedge with radiation.The governing equations are transformed into ordinary differential equations by using similarity variables.The analytical solutions of the transformed governing equations are obtained by using the RK 4th order method along with shooting technique solver.The effects of various physical parameters such as Hartmann number,local Weissenberg number,radiation parameter,unsteadiness parameter,Prandtl number,Lewis number,Brownian diffusion,thermophoresis,wedge angle parameter,moving wedge parameter,on velocity,temperature,concentration,skin friction,heat transfer rate and mass transfer rate have been discussed in detail.The velocity and temperature profile deprives for larger We and an opposite trend is observed for concentration.The radiation parameter is propositional to temperature and a counter behaviour is observed for Pr.
文摘In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60°C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes.
文摘Presented in this manuscript are conventional electrical engineering tools to model the earth as a rotating electrical machine. Calculations using known parameters of the earth and measured field data has resulted in new understanding of the earth’s electrical system and gyroscopic rotation. The material makeup of the inner earth is better understood based on derived permeability and permittivity constants. The planet has been modeled as simple coils and then as a parallel impedance circuit which has led to fundamental insight into planetary speed control and RLC combination for Schumann Resonance of 7.83 Hz. Torque and Voltage Constants and the inverse Speed Constant are calculated using three methods and all compare favorably with Newton’s Gravitational Constant. A helical resonator is referenced and Schumann’s Resonant ideal frequency is calculated and compared with others idealism. A new theory of gravity based on particle velocity selector at the poles is postulated. Two equations are presented as the needed links between Faraday’s electromagnetism and Newtonian physics. Acceleration and Deceleration of earth is explained as a centripetal governor. A new equation for planetary attraction and the attraction of atomic matter is theorized. Rotation of the earth’s electrical coil is explained in terms of the Richardson effect. Electric power transfer from the sun to the planets is proposed via Flux Transfer Events. The impact of this evolving science of electromagnetic modeling of planets will be magnified as the theory is proven, and found to be useful for future generations of engineers and scientists who seek to discover our world and other planets.
文摘An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equations are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (ζ), Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the plate (γ = 70 degrees), flow velocity (f') is strongly increased i.e. accelerated, with thermal buoyancy force parameter (ζ), in particular closer to the plate surface;further into the boundary layer, ζ has a much reduced effect. Conversely temperature (θ) and concentration (ψ) is decreased with increasing thermal buoyancy parameter, ζ. For negative plate inclination, the flow is accelerated whereas for positive inclination it is decelerated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concentration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts temperatures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at intermediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret number cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex-1/2 with ζ Cos γ, for N = -1 the local Nusselt number remains constant for all values of parameter, ζ Cos γ. Local Sherwood number, ShxRex-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The computations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. (1980).
文摘By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreading heat flow may occur inside the rods when the sample is a composite having different thermal conductivities. In order to investigate the thermal resistance due to the constriction/spreading heat flow, the three-dimensional numerical analyses were conducted on the heat transfer characteristics of the rods. In the present analyses, a polymer-based composite board having thermal vias was sandwiched between the rods. From the numerical results, it was confirmed that the constriction/spreading resistance of the rods was strongly affected by the thermal conductivity of the rods as well as the number and size of the thermal vias. A simple equation was also proposed to evaluate the constriction/spreading resistance of the rods. Fairly good agreements were obtained between the numerical results and the calculated ones by the simple equation. Moreover, the discussion was also made on an effective thermal conductivity of the composite board evaluated with the heated and the cooled rod.
文摘We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number approximation. The governing equations are solved analytically with the appropriate boundary conditions by using perturbation technique. The formula of velocity with temperature and concentration is obtained analytically as a function of the physical parameters of the problem.
文摘One of the methods for calculating electromagnetic wave dispersion in multi-layer structures is the transfer matrix method. In this paper, we use the transfer matrix method for second harmonic generation in a nonlinear multilayer structure. The nonlinear photonic crystals investigated in this paper are as one-dimensional multi-layered structures including ferroelectric materials such as LiTaO3. Our goal is to investigate the effect of the disorder on the transmission spectrum of electromagnetic waves. Our results showed that positional disorder has different effects on the transmitting band and the gap band. The disorder in the transmitting band reduces the transmission coefficient of the waves and increases the transmission coefficient of the waves in the gap band. Such work has not yet been done on nonlinear photonic crystals producing the second harmonic.
基金Present calculations were performed at the Texas Tech University High Performance Computer Center and the Texas Advanced Computing Center at the University of Texas at Austin.Prof.Morales acknowledges financial support from the Cancer Prevention and Research Institute of Texas(CPRIT)grant RP140478.Prof.Yan acknowledges the financial support from the National Natural Science Foundation of China(No.21373064)and the Program for Innovative Research Team of Guizhou Province(No.QKTD[2014]4021).
文摘The H^++CO2 reaction at high energies is relevant in atmospheric chemistry,astrophysics,and proton cancer therapy research.Therefore,we present herein a complete investigation of H^++CO2 at ELab=30 eV with the simplest-level electron nuclear dynamics(SLEND)method.SLEND describes nuclei via classical mechanics and electrons with a singledeterminantal Thouless wavefunction.The 3402 SLEND conducted simulations from 42 independent CO2 target orientations provide a full description of all the reactive processes and their mechanisms in this system:non-charge-transfer scattering(NCTS),charge-transfer scattering(CTS),and single C=O bond dissociation;all this valuable information about reactivity is not accessible experimentally.Numerous details of the projectile scattering patterns are provided,including the appearance and coalescence of primary and secondary rainbow angles as a function of the target orientation.SLEND NCTS and CTS differential cross sections(DCSs)are evaluated in conjunction with advanced semi-classical techniques.SLEND NCTS DCS agrees well with its experimental counterpart at all the measured scattering angles,whereas SLEND CTS DCS agrees well at high scattering angles but less satisfactorily at lower ones.Remarkably,both NCTS and CTS SLEND DCSs predict the primary rainbow angle signatures in agreement with the experiment.
基金Partially supported by National Natural Science Foundation of China
文摘The effects of mass transfer and physical properties upon the thinning and rupture of adraining plane parallel film are investigated.An equation is derived in which the thinning rate is afunction of bulk properties.surface properties(surface tension,surface viscosities,and the variationof surface tension with surface concentration),intermolecular forces(London-van der Waals forcesand electrostatic double layer forces),adsorption and surface diffusion coefficients,bubble size andfilm thickness.An estimation for the critical thickness at which a film rupture is carried out and thecoalescence time is obtained by integration to the critical thickness,The coalescence time is predictedas a function of bulk and surface properties,London-van der forces,adsorption and surfacediffusion coefficients,and bubble size.
文摘It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the resonator. Recent studies on of the relay effect of the WPT allow more distant and flexible energy transmission. These new developments hold a promise to construct a fully wireless Body Sensor Network (wBSN) using the new mid-range WPT theory. In this paper, a general optimization strategy for a WPT network is presented by analysis and simulation using the coupled mode theory. Based on the results of theoretical and computational study, two types of thin-film resonators are designed and prototyped for the construction of wBSNs. These resonators and associated electronic components can be integrated into a WPT platform to permit wireless power delivery to multiple wearable sensors and medical implants on the surface and within the human body. Our experiments have demonstrated the feasibility of the WPT approach.
文摘Construction employees could experience occupational psychological disorders, such as workaholism and burnout due to their work, personality characteristics or lifestyle. This study sought to explore the effects of psychological disorders on construction employees and the construction industry. To achieve this aim, both the methods of focus group discussions and survey questionnaire were employed. The focus group discussions revealed 17 potential effects and 12 potential effects of psychological disorders on the construction employees and the construction industry respectively. A quantitative study was then employed to determine the key effects and to test the reliability of the findings from the focus group study. The results revealed that the highly perceived effects of psychological disorders on construction employees were accident-prone, chronic pain, insomnia or sleep disturbances, as these had the highest mean scores. The key effects also identified as perceived effects of construction employees’ psychological health conditions on the construction industry were: absenteeism/sick leave, errors in work, job dissatisfaction and increased medical costs. Exploratory factor analysis was employed, and the 17 effects on construction employees were categorized under behavioural effects and physiological effects. The 12 effects on the construction industry were also categorized under direct costs and indirect costs. The results from this study confirm the need for strategic interventions to mitigate the effects of occupational psychological disorders on construction employees and the construction industry of Ghana and to some extent globally. The exploratory nature of the study using preliminary findings from focus group discussions contributes to the literature on occupational health psychology.
基金support from the National Natural Science Foundation of China(Grants 11675077 and51576208)
文摘Magnetohydrodynamic (MHD) effect and heat transfer are two key issues for design of dual coolant lead lithium (DCLL) blanket. Flow channel insert (FCI) has been applied to decouple the liquid metal from the walls to efficiently decline MHD pressure drops and reduce heat losses from the liquid metal for increasing bulk exit temperatures of the blanket. However, there are still big pressure drops and a higher velocity jet located at the gap flow. Moreover, the FCI made from silicon carbide (SiC) constitutes a complex blanket structures which potentially causes special flow phenomena. In the present work, the characteristics of fluid flow and heat transfer in the DCLL blanket channel are investigated for the first wall (FW) sprayed a layer of no-wetting nano coating (NWNC) on its inner surface. The results show that the pressure drop with NWNC wall is oneorder magnitude lower than that with FCI in the general DCLL blanket. The Nusselt number on the NWNC wall is about half of that on the general wall. On this basis, a heat transfer criterion equation of DCLL channel is achieved for the NWNC wall without FCI. The results are compared with that criterion equation of general wall conditions, which indicates the criterion equation can well predict the convection heat transfer of DCLL channel.
文摘Suzhou Industry Garden is one of the few areas which attract foreign capital on a large scale in China. Its construction will bring effects on regional economy obviously. First, the garden as an important part of the construction of high tech industry belt between Shanghai and Nanjing will become the radiating source and core area in the course of development of high tech industrialization in the southern area of the Changjiang (Yangtze) River. Second, the garden will influence the development of Taicang City, the door port city of Suzhou, and the development of peripheral villages and towns as well. As Taicang City is being constructed as the assistant center for International Shipping Centre in Shanghai, the structure of double nucleus by which Suzhou and Taicang could benefit from each other will come into being. Third, the garden which has been formed as the unique area for introducing foreign managing mode as a whole will be made the base for demonstration and using international economic management experience for reference.
文摘This study aims to understand the in-service training needs,training transfer,and training effectiveness of teachers in local normal universities in China,while also proposing a continuous professional development plan for teachers.Descriptive research methods were employed,with questionnaires serving as the primary data collection tool.The survey revealed that the educational background of teachers in local normal universities is characterized by an unreasonable distribution of academic qualifications,with a shortage of teachers holding postgraduate and higher degrees.Additionally,the training effectiveness for female teachers was found to be lower than that of male teachers.There is a lack of personalization in training needs,which tends to be more generalized.The transfer effect of training is moderate,and there is a need for further enhancement at the behavioral level of training effectiveness.A continuous professional development plan for teachers has been formulated to improve training effectiveness and promote professional development.
文摘In order to reduce east--west section area of “digital divider” in China, Ministry of Culture laun- ches the National Cultural Information Resources Sharing Project in the mid-west provinces, and the state finance gives certain funds subsidy in the project construction period. Embarks highly from strategy during construction plan chosen and operational system management, as while as union digital library to construct a persistent effect mechanism. With the principle of state guidance, enterprise operation and benefit farmers, expand culture industry within the provincial and safeguard Cultural Information Resources Sharing Project sustainable development's, then promotes the rural economy culture full scale development.
基金Funding for this study was provided by Stiftung für Komplementrmedizin, Gottfried und Julia Bangerter-Rhyner Stiftung and Parrotia Stiftung
文摘in recent years research investigating various health benefits of Taiji practice has markedly increased. Despite this growing scientific interest, essential questions such as to what extent a Taiji course may exert noticeable effects in participants' everyday life, what these effects are, and how and where potential transfer effects occur, have hardly been considered. The aim of our study was to explore transfer effects from a Taiji course into participants' daily lives. METHODS: We conducted a longitudinal observational study in 45 healthy participants at the end of their three-month Taiji beginner course (tpl) and at two months (tp2) as well as one year after course completion (tp3). Participants were asked to report their Taiji practice behavior at all time points, as well as to rate and describe perceived transfer effects of Taiji course contents on their daily life at tpl and tp3. RESULTS: Transfer effects were reported by 91.1% of all respondents after course completion (tpl) and persisted in 73.3% at the one-year follow-up assessment (tp3), counting "increase of self-efficacy", "improvement of stress management", and "increase of body awareness" as the most frequently mentioned effects. Transfer effects predominantly occurred in participants' work and social environments, as well as during everyday activities in public areas. While self- reliant Taiji practice frequency significantly decreased from 82.2% at tpl to 55.6% at tp3 (P 〈 0.001), the magnitude of self-reported transfer effects did not (P = 0.35). As explorative analyses revealed, regular Taiji course attendance was highly correlated with stronger transfer effects at tpl (r = 0.51; P 〈 0.001) and tp3 (r = 0.35; P = 0.020). Participants reporting high self-reliant Taiji practice frequency at tp2 were likely to maintain a regular practice routine at tp3 (r = 0.42; P 〈 0.004), whereas self-reliant practice frequency and transfer effects at tpl were positively correlated with self-reliant practice frequency at tp3 on a trend level (r 〈 0.27; P 〉 0.08). CONCLUSION: Our data underline the importance of regular course participation for pronounced and long lasting transfer effects into participants' everyday life. We discuss that several context and process-related aspects of a Taiji intervention are potentially relevant factors for enhancement of transfer effect.