In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storag...In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.展开更多
It presented a comparative consideration of General Motors long-term activities on the current subject of fuel-cell-powered electric vehicles vs Toyota Mirai recent results, relevant to prospects on more efficient and...It presented a comparative consideration of General Motors long-term activities on the current subject of fuel-cell-powered electric vehicles vs Toyota Mirai recent results, relevant to prospects on more efficient and safe technologies of the hydrogen on-board storage. It also presented a call on the project International cooperation. The main aim of this paper is to attract attention of General Motors, Toyota and/or other large car companies to a real possibility of developing and using, in the nearest future, of the break-through hydrogen on-board storage technology based on the solid H2 intercalation into graphite nanostructures.展开更多
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k...Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.展开更多
As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental mode...As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep-water shelf shales in Wufeng–Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng–Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions;the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded that:(1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil.(2) The biogenic silicon(opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time;moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores.(3) The high quality shale of Wufeng–Longmaxi Formation had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas.展开更多
The reproduction characteristics of Aprostocetus prolixus, which is a new parasitioid on Apriona germarii, were studied. It demonstrated that the female adult can generate offspring by either sex reproduction or parth...The reproduction characteristics of Aprostocetus prolixus, which is a new parasitioid on Apriona germarii, were studied. It demonstrated that the female adult can generate offspring by either sex reproduction or parthenogenesis, but all the offspring were male if they were from the mode of parthenogenesis. The sex ratio, with investigating in nature, was 2.38∶1. The environmental conditions had notable influence on sex ratio, survival ratio and fecundity. Its sex ratio increased to 3.48∶1 by feeding complementary nutrition that adding with 20% honey. The temperature has great effect on Aprostocetus prolixus in terms of system research, of which adult longevity decreased with temperature from 17.5 ℃ to 35 ℃ and its ability of reproduction increased between 25 ℃ and 30 ℃ but the acme at 27.5 ℃. Without the feeding complementary nutrition, on the other hand, the female adult will both lose the ability of fecundity at the temperature below 17.5 ℃ and over 35 ℃. With humidity increasing from 40% to 80%, its fecundity increased significantly. It also showed that there was no significant influence of temperature on fecundity between the 4 ℃ to 8 ℃ when cold storage( i.e. the matured larvae for 90 d, the adults for 10 d and the host egg for 40 d).展开更多
Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the explo...Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs.展开更多
Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, ...Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.展开更多
Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the pr...Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the principles of elastic light scattering was introduced. In order to build libraries of scattering images for bacterial pathogens, it is pertinent to determine the effect of preparation and storage of the agar media on the scatter patterns. Scatter patterns of three Escherichia coli serovars (O26, O111 and O157) were studied and used in a model system, after growth on Sorbitol-MacConkey agar plates that were prepared and stored at different conditions in the laboratory. Quantitative image processing software was used to analyze variation in scatter patterns of the same serovar on media prepared under various standard laboratory conditions and to generate a cross-validation matrix for comparison. Based on the results, it was determined that attention should be given during preparation of media so that the agar plates are not air-dried more than 10 - 20 min after solidification at room temperature. The plates could be stored in sealed bags in cold room (4oC - 10oC) for up to a month before use. The findings of this study should provide guidelines in preparation, storage, and handling of media for generation of reproducible scatter patterns of bacterial colonies with the light scattering sensor for pathogen detection.展开更多
The present work focus on the thermal performance of a horizontal concentric heat exchanger, which is numerically investigated to evaluate the heat transfer enhancement process by adding fins with different configurat...The present work focus on the thermal performance of a horizontal concentric heat exchanger, which is numerically investigated to evaluate the heat transfer enhancement process by adding fins with different configurations. As a part of this investigation, the melting process is simulated from the onset of phase change to the offset involving physics of natural convection in PCM fluid pool. The investigation is carried out by ANSYS Fluent code, which is an efficient numerical analysis tool for investigating fluid flow and convective heat transfer phenomena during PCM melting process. The attention is mainly focused on the extension of contact area between the PCM body and cylindrical capsule to enhance heat transfer rates to PCM bodies during the melting process by employing longitudinal fins in the enclosed capsule. Two commercial PCMs: RT50 and C58, are introduced in a 2D cylindrical pipe with their thermo-physical properties as input for modelling. The selected modelling approach is validated against experimental result with respect to the total enthalpy changes that qualify our model to run in the proceeding calculation. It is ensured that an isothermal boundary condition (373 K) is applied to the inner pipe throughout the series of simulation cases and the corresponding Rayleigh number (Ra) ranges from 104 - 105 and Prandtl number (Pr) 0.05 - 0.07. Finally, parametric study is carried out to evaluate the effect of length, thickness and number of longitudinal fins on the thermal performance of PCM-LHTES (Latent Heat Thermal Energy Storage) system associated with the physics of natural convection process during PCM melting.展开更多
With the development of cloud computing, the mutual understandability among distributed data access control has become an important issue in the security field of cloud computing. To ensure security, confidentiality a...With the development of cloud computing, the mutual understandability among distributed data access control has become an important issue in the security field of cloud computing. To ensure security, confidentiality and fine-grained data access control of Cloud Data Storage (CDS) environment, we proposed Multi-Agent System (MAS) architecture. This architecture consists of two agents: Cloud Service Provider Agent (CSPA) and Cloud Data Confidentiality Agent (CDConA). CSPA provides a graphical interface to the cloud user that facilitates the access to the services offered by the system. CDConA provides each cloud user by definition and enforcement expressive and flexible access structure as a logic formula over cloud data file attributes. This new access control is named as Formula-Based Cloud Data Access Control (FCDAC). Our proposed FCDAC based on MAS architecture consists of four layers: interface layer, existing access control layer, proposed FCDAC layer and CDS layer as well as four types of entities of Cloud Service Provider (CSP), cloud users, knowledge base and confidentiality policy roles. FCDAC, it’s an access policy determined by our MAS architecture, not by the CSPs. A prototype of our proposed FCDAC scheme is implemented using the Java Agent Development Framework Security (JADE-S). Our results in the practical scenario defined formally in this paper, show the Round Trip Time (RTT) for an agent to travel in our system and measured by the times required for an agent to travel around different number of cloud users before and after implementing FCDAC.展开更多
The main objective of the present study is to characterize cap rock formation used for geological storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before CO2 injection. This ...The main objective of the present study is to characterize cap rock formation used for geological storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before CO2 injection. This step is necessary for an understanding of CO2-brine-rock interactions. The mineralogical composition of several clay samples collected from real storage sites located in the south of Tunisia was determined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled to a probe EDS, infrared spectroscopy, thermal analysis and fluorescence spectra. The obtained experimental results reveal that illite, calcite and quartz are the dominant clay minerals. Dolomite and albite are also present. Besides, SEM analysis shows laminated structure for these samples which suggests low crystallinity. This sample contains a higher content of Fe, Cl, Ca and O. The clay cover may also be useful in storage process by immobilizing the migration of CO2 outer of the geological site and activating the process of mineral sequestration.展开更多
With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably...With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost.展开更多
In order to measure the thermophysical properties of ammoniated salt (CaCl2.mNH3: m = 4, 8) as an energy storage system utilizing natural resources, the measurement unit was developed, and the thermophysical propertie...In order to measure the thermophysical properties of ammoniated salt (CaCl2.mNH3: m = 4, 8) as an energy storage system utilizing natural resources, the measurement unit was developed, and the thermophysical properties (effective thermal conductivity and thermal diffusivity) of CaCl2.mNH3 and CaCl2.mNH3 with heat transfer media (Ti: titanium) were measured by the any heating method. The effective thermal conductivities of CaCl2.4NH3 + Ti and CaCl2.8NH3 + Ti were 0.14 - 0.17 and 0.18 - 0.20 W/(m.K) in the measuring temperature range of 290 - 350 K, respectively, and these values were approximately 1.5 - 2.2 times larger than those of CaCl2.4NH3 and CaCl2.8NH3. The effective thermal diffusivities were 0.22 - 0.24 × 10-6 and 0.18 - 0.19 × 10-6 m2/sin the measuring temperature range of 290 - 350 K, respectively, and these values were approximately 1.3 - 1.5 times larger than those of CaCl2.4NH3 and CaCl2.8NH3. The obtained results show that the thermophysical properties have a dependence on the bulk densities and specific heats of CaCl2.mNH3 and CaCl2.mNH3 + Ti. It reveals that the thermophysical properties in this measurement would be the valuable design factors to develop energy and H2 storage systems utilizing natural resources such as solar energy.展开更多
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri...Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.展开更多
The rare earth based hydrogen storage alloys MmxM1 1 - x ( Ni3.55 Co0.75 Mn0.4 A10.3 ) ( x = 0 ~ 0.5 ) were investigated in this work.Adjusted Ml: Mm ratio to change the content of La,Ce,Pr and Nd in the alloys and t...The rare earth based hydrogen storage alloys MmxM1 1 - x ( Ni3.55 Co0.75 Mn0.4 A10.3 ) ( x = 0 ~ 0.5 ) were investigated in this work.Adjusted Ml: Mm ratio to change the content of La,Ce,Pr and Nd in the alloys and then to change the phase structure, the influences of phase structure on the electrochemical properties were analyzed.The results indicate that the main phase of all alloys is LaNi5 with CaCu5 type structure and the crystal lattices constants of LaNi5 are changed with increasing x value, i.e, decreased a-axis, increased c-axis and axis ratio and nonlinear decreased crystal volume.The crystal volume of the alloy with x = 0.3 is larger than others.There is second phase A1LaNi4 in alloys when x≥0.3, which decrease the discharge capacity, but increase the cycling stability and high rate discharge ability.Compared comprehensively, the alloy with x = 0.3 shows the higher discharge capacity and the better cycling stability.展开更多
Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-...In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.展开更多
基金Supported by the CNPC Science and Technology Major Project(2015E-4002)
文摘In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.
文摘It presented a comparative consideration of General Motors long-term activities on the current subject of fuel-cell-powered electric vehicles vs Toyota Mirai recent results, relevant to prospects on more efficient and safe technologies of the hydrogen on-board storage. It also presented a call on the project International cooperation. The main aim of this paper is to attract attention of General Motors, Toyota and/or other large car companies to a real possibility of developing and using, in the nearest future, of the break-through hydrogen on-board storage technology based on the solid H2 intercalation into graphite nanostructures.
基金supported by the National Key Research&Development Program of China,Nos.2021YFC2501205(to YC),2022YFC24069004(to JL)the STI2030-Major Project,Nos.2021ZD0201101(to YC),2022ZD0211800(to YH)+2 种基金the National Natural Science Foundation of China(Major International Joint Research Project),No.82020108013(to YH)the Sino-German Center for Research Promotion,No.M-0759(to YH)a grant from Beijing Municipal Science&Technology Commission(Beijing Brain Initiative),No.Z201100005520018(to JL)。
文摘Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.
基金Supported by the China National Science and Technology Major Project(2017ZX05036,2017ZX05036001).
文摘As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep-water shelf shales in Wufeng–Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng–Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions;the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded that:(1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil.(2) The biogenic silicon(opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time;moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores.(3) The high quality shale of Wufeng–Longmaxi Formation had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas.
文摘The reproduction characteristics of Aprostocetus prolixus, which is a new parasitioid on Apriona germarii, were studied. It demonstrated that the female adult can generate offspring by either sex reproduction or parthenogenesis, but all the offspring were male if they were from the mode of parthenogenesis. The sex ratio, with investigating in nature, was 2.38∶1. The environmental conditions had notable influence on sex ratio, survival ratio and fecundity. Its sex ratio increased to 3.48∶1 by feeding complementary nutrition that adding with 20% honey. The temperature has great effect on Aprostocetus prolixus in terms of system research, of which adult longevity decreased with temperature from 17.5 ℃ to 35 ℃ and its ability of reproduction increased between 25 ℃ and 30 ℃ but the acme at 27.5 ℃. Without the feeding complementary nutrition, on the other hand, the female adult will both lose the ability of fecundity at the temperature below 17.5 ℃ and over 35 ℃. With humidity increasing from 40% to 80%, its fecundity increased significantly. It also showed that there was no significant influence of temperature on fecundity between the 4 ℃ to 8 ℃ when cold storage( i.e. the matured larvae for 90 d, the adults for 10 d and the host egg for 40 d).
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFB1304902)the National Natural Science Foundation of China(Grant Nos.12004034,U1813211,22005247,11904372,51502007,52072323,52122211,12174019,and 51972058)+1 种基金the Gen-eral Research Fund of Hong Kong(Project No.11217221)China Postdoctoral Science Foundation Funded Project(Grant No.2021M690386).
文摘Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs.
文摘Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.
文摘Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the principles of elastic light scattering was introduced. In order to build libraries of scattering images for bacterial pathogens, it is pertinent to determine the effect of preparation and storage of the agar media on the scatter patterns. Scatter patterns of three Escherichia coli serovars (O26, O111 and O157) were studied and used in a model system, after growth on Sorbitol-MacConkey agar plates that were prepared and stored at different conditions in the laboratory. Quantitative image processing software was used to analyze variation in scatter patterns of the same serovar on media prepared under various standard laboratory conditions and to generate a cross-validation matrix for comparison. Based on the results, it was determined that attention should be given during preparation of media so that the agar plates are not air-dried more than 10 - 20 min after solidification at room temperature. The plates could be stored in sealed bags in cold room (4oC - 10oC) for up to a month before use. The findings of this study should provide guidelines in preparation, storage, and handling of media for generation of reproducible scatter patterns of bacterial colonies with the light scattering sensor for pathogen detection.
文摘The present work focus on the thermal performance of a horizontal concentric heat exchanger, which is numerically investigated to evaluate the heat transfer enhancement process by adding fins with different configurations. As a part of this investigation, the melting process is simulated from the onset of phase change to the offset involving physics of natural convection in PCM fluid pool. The investigation is carried out by ANSYS Fluent code, which is an efficient numerical analysis tool for investigating fluid flow and convective heat transfer phenomena during PCM melting process. The attention is mainly focused on the extension of contact area between the PCM body and cylindrical capsule to enhance heat transfer rates to PCM bodies during the melting process by employing longitudinal fins in the enclosed capsule. Two commercial PCMs: RT50 and C58, are introduced in a 2D cylindrical pipe with their thermo-physical properties as input for modelling. The selected modelling approach is validated against experimental result with respect to the total enthalpy changes that qualify our model to run in the proceeding calculation. It is ensured that an isothermal boundary condition (373 K) is applied to the inner pipe throughout the series of simulation cases and the corresponding Rayleigh number (Ra) ranges from 104 - 105 and Prandtl number (Pr) 0.05 - 0.07. Finally, parametric study is carried out to evaluate the effect of length, thickness and number of longitudinal fins on the thermal performance of PCM-LHTES (Latent Heat Thermal Energy Storage) system associated with the physics of natural convection process during PCM melting.
文摘With the development of cloud computing, the mutual understandability among distributed data access control has become an important issue in the security field of cloud computing. To ensure security, confidentiality and fine-grained data access control of Cloud Data Storage (CDS) environment, we proposed Multi-Agent System (MAS) architecture. This architecture consists of two agents: Cloud Service Provider Agent (CSPA) and Cloud Data Confidentiality Agent (CDConA). CSPA provides a graphical interface to the cloud user that facilitates the access to the services offered by the system. CDConA provides each cloud user by definition and enforcement expressive and flexible access structure as a logic formula over cloud data file attributes. This new access control is named as Formula-Based Cloud Data Access Control (FCDAC). Our proposed FCDAC based on MAS architecture consists of four layers: interface layer, existing access control layer, proposed FCDAC layer and CDS layer as well as four types of entities of Cloud Service Provider (CSP), cloud users, knowledge base and confidentiality policy roles. FCDAC, it’s an access policy determined by our MAS architecture, not by the CSPs. A prototype of our proposed FCDAC scheme is implemented using the Java Agent Development Framework Security (JADE-S). Our results in the practical scenario defined formally in this paper, show the Round Trip Time (RTT) for an agent to travel in our system and measured by the times required for an agent to travel around different number of cloud users before and after implementing FCDAC.
文摘The main objective of the present study is to characterize cap rock formation used for geological storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before CO2 injection. This step is necessary for an understanding of CO2-brine-rock interactions. The mineralogical composition of several clay samples collected from real storage sites located in the south of Tunisia was determined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled to a probe EDS, infrared spectroscopy, thermal analysis and fluorescence spectra. The obtained experimental results reveal that illite, calcite and quartz are the dominant clay minerals. Dolomite and albite are also present. Besides, SEM analysis shows laminated structure for these samples which suggests low crystallinity. This sample contains a higher content of Fe, Cl, Ca and O. The clay cover may also be useful in storage process by immobilizing the migration of CO2 outer of the geological site and activating the process of mineral sequestration.
文摘With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost.
文摘In order to measure the thermophysical properties of ammoniated salt (CaCl2.mNH3: m = 4, 8) as an energy storage system utilizing natural resources, the measurement unit was developed, and the thermophysical properties (effective thermal conductivity and thermal diffusivity) of CaCl2.mNH3 and CaCl2.mNH3 with heat transfer media (Ti: titanium) were measured by the any heating method. The effective thermal conductivities of CaCl2.4NH3 + Ti and CaCl2.8NH3 + Ti were 0.14 - 0.17 and 0.18 - 0.20 W/(m.K) in the measuring temperature range of 290 - 350 K, respectively, and these values were approximately 1.5 - 2.2 times larger than those of CaCl2.4NH3 and CaCl2.8NH3. The effective thermal diffusivities were 0.22 - 0.24 × 10-6 and 0.18 - 0.19 × 10-6 m2/sin the measuring temperature range of 290 - 350 K, respectively, and these values were approximately 1.3 - 1.5 times larger than those of CaCl2.4NH3 and CaCl2.8NH3. The obtained results show that the thermophysical properties have a dependence on the bulk densities and specific heats of CaCl2.mNH3 and CaCl2.mNH3 + Ti. It reveals that the thermophysical properties in this measurement would be the valuable design factors to develop energy and H2 storage systems utilizing natural resources such as solar energy.
文摘Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.
文摘The rare earth based hydrogen storage alloys MmxM1 1 - x ( Ni3.55 Co0.75 Mn0.4 A10.3 ) ( x = 0 ~ 0.5 ) were investigated in this work.Adjusted Ml: Mm ratio to change the content of La,Ce,Pr and Nd in the alloys and then to change the phase structure, the influences of phase structure on the electrochemical properties were analyzed.The results indicate that the main phase of all alloys is LaNi5 with CaCu5 type structure and the crystal lattices constants of LaNi5 are changed with increasing x value, i.e, decreased a-axis, increased c-axis and axis ratio and nonlinear decreased crystal volume.The crystal volume of the alloy with x = 0.3 is larger than others.There is second phase A1LaNi4 in alloys when x≥0.3, which decrease the discharge capacity, but increase the cycling stability and high rate discharge ability.Compared comprehensively, the alloy with x = 0.3 shows the higher discharge capacity and the better cycling stability.
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
文摘In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.