期刊文献+
共找到820,312篇文章
< 1 2 250 >
每页显示 20 50 100
Cyber Resilience through Real-Time Threat Analysis in Information Security
1
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security network Security Cyber Resilience Real-Time Threat Analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Neural Network-Powered License Plate Recognition System Design
2
作者 Sakib Hasan Md Nagib Mahfuz Sunny +1 位作者 Abdullah Al Nahian Mohammad Yasin 《Engineering(科研)》 2024年第9期284-300,共17页
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ... The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations. 展开更多
关键词 Intelligent Traffic Control Systems Automatic License Plate Recognition (ALPR) Neural networks Vehicle Surveillance Traffic Management License Plate Recognition Algorithms Image Extraction Character Segmentation Character Recognition Low-Light Environments Inclement Weather Empirical Findings Algorithm Accuracy Simulation Outcomes DIGITALIZATION
下载PDF
Semantic model and optimization of creative processes at mathematical knowledge formation
3
作者 Victor Egorovitch Firstov 《Natural Science》 2010年第8期915-922,共8页
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ... The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications. 展开更多
关键词 The Cybernetic Conception Optimization of CONTROL Quantitative And Qualitative Information Measures Modelling Intellectual Systems Neural network MATHEMATICAL Education The CONTROL of Pedagogical PROCESSES CREATIVE Pedagogics Cognitive And CREATIVE PROCESSES Informal Axiomatic Thery SEMANTIC NET NET Optimization Parameters The Topology of SEMANTIC NET Metrization The System of Coverings Stochastic Model of CREATIVE PROCESSES At The Formation of MATHEMATICAL Knowledge Branching Markovian Process Great Main Points Strategy (GMP-Strategy) of The CREATIVE PROCESSES CONTROL Interdisciplinary Learning: Colorimetric Barycenter
下载PDF
Application of Convolutional Neural Networks in Classification of GBM for Enhanced Prognosis
4
作者 Rithik Samanthula 《Advances in Bioscience and Biotechnology》 CAS 2024年第2期91-99,共9页
The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat... The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness. 展开更多
关键词 GLIOBLASTOMA Machine Learning Artificial Intelligence Neural networks Brain Tumor Cancer Tensorflow LAYERS CYTOARCHITECTURE Deep Learning Deep Neural network Training Batches
下载PDF
Using Neural Networks to Predict Secondary Structure for Protein Folding 被引量:1
5
作者 Ali Abdulhafidh Ibrahim Ibrahim Sabah Yasseen 《Journal of Computer and Communications》 2017年第1期1-8,共8页
Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate predi... Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples. 展开更多
关键词 Protein Secondary Structure Prediction (PSSP) NEURAL network (NN) Α-HELIX (H) Β-SHEET (E) Coil (C) Feed Forward NEURAL network (FNN) Learning Vector Quantization (LVQ) Probabilistic NEURAL network (PNN) Convolutional NEURAL network (CNN)
下载PDF
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis
6
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Measuring Global Supply Chain Vulnerabilities Using Trade Network Analysis Method
7
作者 Cui Xiaomin Xiong Wanting +1 位作者 Yang Panpan Xu Qiyuan 《China Economist》 2023年第1期68-86,共19页
With the trade network analysis method and bilateral country-product level trade data of 2017-2020,this paper reveals the overall characteristics and intrinsic vulnerabilities of China’s global supply chains.Our rese... With the trade network analysis method and bilateral country-product level trade data of 2017-2020,this paper reveals the overall characteristics and intrinsic vulnerabilities of China’s global supply chains.Our research finds that first,most global supply-chain-vulnerable products are from technology-intensive sectors.For advanced economies,their supply chain vulnerabilities are primarily exposed to political and economic alliances.In comparison,developing economies are more dependent on regional communities.Second,China has a significant export advantage with over 80%of highly vulnerable intermediate inputs relying on imports of high-end electrical,mechanical and chemical products from advanced economies or their multinational companies.China also relies on developing economies for the import of some resource products.Third,during the trade frictions from 2018 to 2019 and the subsequent COVID-19 pandemic,there was a significant reduction in the supply chain vulnerabilities of China and the US for critical products compared with other products,which reflects a shift in the layout of critical product supply chains to ensure not just efficiency but security.China should address supply chain vulnerabilities by bolstering supply-side weaknesses,diversifying import sources,and promoting international coordination and cooperation. 展开更多
关键词 Supply chain VULNERABILITIES TRADE network analysis EXPORT CENTRALITY variance INDEX IMPORT CENTRALITY variance INDEX
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
8
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
New “Intellectual Networks” (Smart Grid) for Detecting Electrical Equipment Faults, Defects and Weaknesses
9
作者 Alexander Yu. Khrennikov 《Smart Grid and Renewable Energy》 2012年第3期159-164,共6页
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop... The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others. 展开更多
关键词 INTELLECTUAL networkS Smart Grid Monitoring SYSTEM Electrical Equipment Information-measuring SYSTEM Frequency Response Analysis Transformer WINDING Fault Diagnostic Low Voltage Impulse Method SHORT-CIRCUIT Inductive REACTANCE Measurement
下载PDF
Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks
10
作者 Vijay Khare Jayashree Santhosh +1 位作者 Sneh Anand Manvir Bhatia 《Journal of Biomedical Science and Engineering》 2010年第2期200-205,共6页
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electr... In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In MLP-BP NN five training methods used were a) Gradient Descent Back Propagation b) Levenberg-Marquardt c) Resilient Back Propagation d) Conjugate Learning Gradient Back Propagation and e) Gradient Descent Back Propagation with movementum. 展开更多
关键词 ELECTROENCEPHALOGRAM (EEG) Wavelet Packet Transform (WPT) Support Vector Machine (SVM) Radial Basis Function NEURAL network (RBFNN) Multilayer Back Propagation NEURAL network (MLP-BPNN) Brain Computer Interface (BCI)
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
11
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
A Cross-Layer Optimization Framework for Energy Efficiency in Wireless Sensor Networks
12
作者 Karuna Babber Rajneesh Randhawa 《Wireless Sensor Network》 2017年第6期189-203,共15页
We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of th... We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of the clusters. A cross-layer optimization has been proposed to reduce total energy expenditure of the network;at network layer, routing is done through uniform clusters;at MAC layer, each sensor node of the cluster is assigned fixed or variable time slots and at physical layer different member of the clusters is assigned different modulation techniques. MATLAB simulation proved substantial network lifetime gains. 展开更多
关键词 Clustering Cluster HEADS BORDER NODES Base Station CROSS-LAYER Design Physical LAYER MAC Routing LAYER PACKET Size Modulation Quality of Services (QoS) Wireless Sensor networks
下载PDF
Preliminary Network Centric Therapy for Machine Learning Classification of Deep Brain Stimulation Status for the Treatment of Parkinson’s Disease with a Conformal Wearable and Wireless Inertial Sensor 被引量:11
13
作者 Robert LeMoyne Timothy Mastroianni +1 位作者 Donald Whiting Nestor Tomycz 《Advances in Parkinson's Disease》 2019年第4期75-91,共17页
The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Thera... The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Therapy is highly relevant to the treatment of Parkinson’s disease through deep brain stimulation. Originally wearable and wireless systems for quantifying Parkinson’s disease involved the use a smartphone to quantify hand tremor. Although originally novel, the smartphone has notable issues as a wearable application for quantifying movement disorder tremor. The smartphone has evolved in a pathway that has made the smartphone progressively more cumbersome to mount about the dorsum of the hand. Furthermore, the smartphone utilizes an inertial sensor package that is not certified for medical analysis, and the trial data access a provisional Cloud computing environment through an email account. These concerns are resolved with the recent development of a conformal wearable and wireless inertial sensor system. This conformal wearable and wireless system mounts to the hand with the profile of a bandage by adhesive and accesses a secure Cloud computing environment through a segmented wireless connectivity strategy involving a smartphone and tablet. Additionally, the conformal wearable and wireless system is certified by the FDA of the United States of America for ascertaining medical grade inertial sensor data. These characteristics make the conformal wearable and wireless system uniquely suited for the quantification of Parkinson’s disease treatment through deep brain stimulation. Preliminary evaluation of the conformal wearable and wireless system is demonstrated through the differentiation of deep brain stimulation set to “On” and “Off” status. Based on the robustness of the acceleration signal, this signal was selected to quantify hand tremor for the prescribed deep brain stimulation settings. Machine learning classification using the Waikato Environment for Knowledge Analysis (WEKA) was applied using the multilayer perceptron neural network. The multilayer perceptron neural network achieved considerable classification accuracy for distinguishing between the deep brain stimulation system set to “On” and “Off” status through the quantified acceleration signal data obtained by this recently developed conformal wearable and wireless system. The research achievement establishes a progressive pathway to the future objective of achieving deep brain stimulation capabilities that promote closed-loop acquisition of configuration parameters that are uniquely optimized to the individual through extrinsic means of a highly conformal wearable and wireless inertial sensor system and machine learning with access to Cloud computing resources. 展开更多
关键词 Parkinsons Disease Deep Brain Stimulation WEARABLE and WIRELESS Systems CONFORMAL WEARABLE Machine Learning Inertial Sensor ACCELEROMETER WIRELESS ACCELEROMETER Hand Tremor Cloud Computing network Centric THERAPY
下载PDF
Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques
14
作者 Nasser Alshammari Shumaila Shahzadi +7 位作者 Saad Awadh Alanazi Shahid Naseem Muhammad Anwar Madallah Alruwaili Muhammad Rizwan Abid Omar Alruwaili Ahmed Alsayat Fahad Ahmad 《Computer Systems Science & Engineering》 2024年第2期363-394,共32页
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne... Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment. 展开更多
关键词 Software defined network network function virtualization network function virtualization management and orchestration virtual infrastructure manager virtual network function Kubernetes Kubectl artificial intelligence machine learning
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
15
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
Proposed Caching Scheme for Optimizing Trade-off between Freshness and Energy Consumption in Name Data Networking Based IoT 被引量:1
16
作者 Rahul Shrimali Hemal Shah Riya Chauhan 《Advances in Internet of Things》 2017年第2期11-24,共14页
Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offer... Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offers opportunities but may also bear risks. A hitherto neglected aspect is the possible increase in power consumption as smart devices in IoT applications are expected to be reachable by other devices at all times. This implies that the device is consuming electrical energy even when it is not in use for its primary function. Many researchers’ communities have started addressing storage ability like cache memory of smart devices using the concept called—Named Data Networking (NDN) to achieve better energy efficient communication model. In NDN, memory or buffer overflow is the common challenge especially when internal memory of node exceeds its limit and data with highest degree of freshness may not be accommodated and entire scenarios behaves like a traditional network. In such case, Data Caching is not performed by intermediate nodes to guarantee highest degree of freshness. On the periodical updates sent from data producers, it is exceedingly demanded that data consumers must get up to date information at cost of lease energy. Consequently, there is challenge in maintaining tradeoff between freshness energy consumption during Publisher-Subscriber interaction. In our work, we proposed the architecture to overcome cache strategy issue by Smart Caching Algorithm for improvement in memory management and data freshness. The smart caching strategy updates the data at precise interval by keeping garbage data into consideration. It is also observed from experiment that data redundancy can be easily obtained by ignoring/dropping data packets for the information which is not of interest by other participating nodes in network, ultimately leading to optimizing tradeoff between freshness and energy required. 展开更多
关键词 Internet of Things (IoT) Named Data networkING Smart CACHING Table Pending INTEREST Forwarding INFORMATION Base CONTENT Store CONTENT Centric networkING INFORMATION Centric networkING Data & INTEREST Packets SCTSmart CACHING
下载PDF
Resting-state network complexity and magnitude changes in neonates with severe hypoxic ischemic encephalopathy 被引量:4
17
作者 Hong-Xin Li Min Yu +4 位作者 Ai-Bin Zheng Qin-Fen Zhang Guo-Wei Hua Wen-Juan Tu Li-Chi Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期642-648,共7页
Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases rema... Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0. 展开更多
关键词 nerve REGENERATION NEONATES hypoxic ischemic encephalopathy RESTING-STATE FUNCTIONAL magnetic resonance imaging BRAIN networks SMALL-WORLD organization BRAIN FUNCTIONAL connectivity local efficiency clustering coefficient neural REGENERATION
下载PDF
Design of an Interconnection Architecture and Sizing of Two (2) EPC Core Networks: The Case of Orange-Guinea
18
作者 Mamadou Sadigou Diallo Kadiatou Aissatou Barry +4 位作者 Amadou Lamarana Bah Mamadou Sanoussy Camara Janvier Fotsing Amadou Barry Amadou Oury Bah 《Journal of Energy and Power Engineering》 CAS 2024年第2期59-70,共12页
With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to res... With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart. 展开更多
关键词 5G network 4G network(EPS(evolved packet system)) 3G network(UMTS:Universal Mobile Telecommunications System) EPC network of the heart architecture dimensional Orange Guinea technology service
下载PDF
Mechanism of Anti-tumor Effects of Viola Medicinal Materials Based on Network Pharmacology and Molecular Docking
19
作者 Xiaoyong HE Liniu SHAMA +4 位作者 Dongmei SHA Shuaicong NI Jing WEN Xinjia YAN Yuan LIU 《Medicinal Plant》 2024年第3期9-15,共7页
[Objectives]To explore the relationship between anti-tumor components,targets,and pathways involved in Viola medicinal materials,study its main active components,and evaluate its inhibitory activity.[Methods]Through n... [Objectives]To explore the relationship between anti-tumor components,targets,and pathways involved in Viola medicinal materials,study its main active components,and evaluate its inhibitory activity.[Methods]Through network pharmacological analysis,molecular docking simulation experiments and in vitro experiments,the main components and corresponding targets of Viola were screened out,and their anti-tumor signaling pathways were confirmed.MTT colorimetric assay was used to investigate the inhibitory effect of different extraction layers of Viola on the growth of tumor cells.[Results]18 anti-tumor active components such as 2α,19α-Dihydroxyursolic acid,Corlumine,Madolin U,Trifolirhizin and etc.,and 52 action targets such as PTGS2,PTGS1,P2RX7,MMP1,and GABRB3,and anti-tumor signaling pathways were confirmed.The results of molecular docking showed that all the selected Viola compounds had good binding activity.The results of MTT colorimetric assay showed that the petroleum ether layer and n-butanol layer had a good inhibitory effect on the growth of tumor cell lines.[Conclusions]Viola medicinal materials have the potential of anti-tumor,triterpenoids and flavonoids may be the main active components,and the petroleum ether layer and n-butanol layer have better inhibitory effect on the growth of tumor cells. 展开更多
关键词 VIOLA MEDICINAL materials ANTI-TUMOR network PHARMACOLOGY Molecular DOCKING MTT
下载PDF
Optimal Partitioning of Distribution Networks for Micro-Grid Operation
20
作者 Shane J. Kimble Divya T. Vedullapalli Elham B. Makram 《Journal of Power and Energy Engineering》 2017年第9期104-120,共17页
A great concern for the modern distribution grid is how well it can withstand and respond to adverse conditions. One way that utilities are addressing this issue is by adding redundancy to their systems. Likewise, dis... A great concern for the modern distribution grid is how well it can withstand and respond to adverse conditions. One way that utilities are addressing this issue is by adding redundancy to their systems. Likewise, distributed generation (DG) is becoming an increasingly popular asset at the distribution level and the idea of microgrids operating as standalone systems apart from the bulk electric grid is quickly becoming a reality. This allows for greater flexibility as systems can now take on exponentially more configurations than the radial, one-way distribution systems of the past. These added capabilities, however, make the system reconfiguration with a much more complex problem causing utilities to question if they are operating their distribution systems optimally. In addition, tools like Supervisory Control and Data Acquisition (SCADA) and Distribution Automation (DA) allow for systems to be reconfigured faster than humans can make decisions on how to reconfigure them. As a result, this paper seeks to develop an automated partitioning scheme for distribution systems that can respond to varying system conditions while ensuring a variety of operational constraints on the final configuration. It uses linear programming and graph theory. Power flow is calculated externally to the LP and a feedback loop is used to recalculate the solution if a violation is found. Application to test systems shows that it can reconfigure systems containing any number of loops resulting in a radial configuration. It can connect multiple sources to a single microgrid if more capacity is needed to supply the microgrid’s load. 展开更多
关键词 Distributed Generation (DG) Supervisory Control and Data Acquisition (SCADA) Distribution Automation (DA) Fault Location Isolation and RESTORATION (FLISR) SELF-HEALING network MICRO-GRID Smart Grid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部