The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the ...This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ...The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.展开更多
In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the m...In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specifica...Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).展开更多
The model proposes that Nuclei of all macroobjects (Galaxy clusters, Galaxies, Star clusters, Extrasolar systems) are made up of Dark Matter Particles (DMP). These Nuclei are surrounded by Shells composed of both Dark...The model proposes that Nuclei of all macroobjects (Galaxy clusters, Galaxies, Star clusters, Extrasolar systems) are made up of Dark Matter Particles (DMP). These Nuclei are surrounded by Shells composed of both Dark and Baryonic matter. This model is used to explain various astrophysical phenomena: Multi-wavelength Pulsars;Binary Millisecond Pulsars;Gamma-Ray Bursts;Fast Radio Bursts;Young Stellar Object Dippers;Starburst Galaxies;Gravitational Waves. New types of Fermi Compact Stars made of DMP are introduced: Neutralino star, WIMP star, and DIRAC star. Gamma-Ray Pulsars are rotating Neutralino and WIMP stars. Merger of binary DIRAC stars can be a source of Gravitational waves.展开更多
The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth ...The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Pütter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.展开更多
The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and o...The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].展开更多
Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws...Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU...Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
Some studies have suggested that early surgical treatment can effectively improve the prognosis of cervical spinal cord injury without radiological abnormality, but no research has focused on the development of a prog...Some studies have suggested that early surgical treatment can effectively improve the prognosis of cervical spinal cord injury without radiological abnormality, but no research has focused on the development of a prognostic model of cervical spinal cord injury without radiological abnormality. This retrospective analysis included 43 patients with cervical spinal cord injury without radiological abnormality. Seven potential factors were assessed: age, sex, external force strength causing damage, duration of disease, degree of cervical spinal stenosis, Japanese Orthopaedic Association score, and physiological cervical curvature. A model was established using multiple binary logistic regression analysis. The model was evaluated by concordant profiling and the area under the receiver operating characteristic curve. Bootstrapping was used for internal validation. The prognostic model was as follows: logit(P) =-25.4545 + 21.2576 VALUE + 1.2160SCORE-3.4224 TIME, where VALUE refers to the Pavlov ratio indicating the extent of cervical spinal stenosis, SCORE refers to the Japanese Orthopaedic Association score(0–17) after the operation, and TIME refers to the disease duration(from injury to operation). The area under the receiver operating characteristic curve for all patients was 0.8941(95% confidence interval, 0.7930–0.9952). Three factors assessed in the predictive model were associated with patient outcomes: a great extent of cervical stenosis, a poor preoperative neurological status, and a long disease duration. These three factors could worsen patient outcomes. Moreover, the disease prognosis was considered good when logit(P) ≥-2.5105. Overall, the model displayed a certain clinical value. This study was approved by the Biomedical Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University, China(approval number: 2018063) on May 8, 2018.展开更多
The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model u...The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters.In this study,we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences.The severe controlled cortical impact model was produced by an electronic controlled cortical impact device,while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube.Body temperature and mortality were recorded,and neurological deficits were assessed with the modified neurological severity score.Brain edema and bloodbrain barrier damage were evaluated by assessing brain water content and Evans blue extravasation.In addition,a cytokine array kit was used to detect inflammatory cytokines.Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining.Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations.More severe motor dysfunction was observed in the severe controlled cortical impact model,while more severe cognitive dysfunction was observed in the severe free weight drop model.Brain edema,inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group.The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage,with higher mortality and lower repeatability compared with the severe controlled cortical impact group.Severe brainstem damage was not found in the severe controlled cortical impact model.These results indicate that the severe controlled cortical impact model is relatively more stable,more reproducible,and shows obvious cerebral pathological changes at an earlier stage.Therefore,the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury,while the severe free weight drop model may be more apt for studies on diffuse axonal injury.All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University,China(approval No.IRB2012-028-02)in Febru ary 2012.展开更多
The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM)...The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
A simplified model is proposed for an easy understanding of the coarse-grained technique and for achieving a first approximation to the behavior of gases. A mole of a gas substance, within a cubic container, is repres...A simplified model is proposed for an easy understanding of the coarse-grained technique and for achieving a first approximation to the behavior of gases. A mole of a gas substance, within a cubic container, is represented by six particles symmetrically moving. The impacts of particles on container walls, the inter-particle collisions, as well as the volume of particles and the inter-particle attractive forces, obeying a Lennard-Jones curve, are taken into account. Thanks to the symmetry, the problem is reduced to the nonlinear dynamic analysis of a SDOF oscillator, which is numerically solved by a step-by-step time integration algorithm. Five applications of proposed model, on Carbon Dioxide, are presented: 1) Ideal gas in STP conditions. 2) Real gas in STP conditions. 3) Condensation for small molar volume. 4) Critical point. 5) Iso-kinetic energy curves and iso-therms in the critical point region. Results of the proposed model are compared with test data and results of the Van der Waals model for real gases.展开更多
Small and medium-sized enterprises have developed rapidly under the guidance and support of the national industrial policy.Because of the influence of the post financial crisis,the rate of the global economy developme...Small and medium-sized enterprises have developed rapidly under the guidance and support of the national industrial policy.Because of the influence of the post financial crisis,the rate of the global economy development decreased and the market competition increased,the profit of small and medium-sized enterprises is on the decline or even in a loss.The paper,based on the value creation logic of Balanced Score Card,put forward that we should,with the Differentiation Strategy as the basis,using Strategy Map and Cascade Strategy,integrate the key internal procedures to increase the strategic preparation of intangible assets to guide the business model innovation of small and medium-sized enterprises and promote the rapid development of small and medium-sized enterprises.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
The unique composition of milk makes this basic foodstuff into an exceptional raw material for the production of new ingredients with desired properties and diverse applications in the food industry. The fractionation...The unique composition of milk makes this basic foodstuff into an exceptional raw material for the production of new ingredients with desired properties and diverse applications in the food industry. The fractionation of milk is the key in the development of those ingredients and products;hence continuous research and development on this field, especially various levels of fractionation and separation by filtration, have been carried out. This review focuses on the production of milk fractions as well as their particular properties, applications and processes that increase their exploitation. Whey proteins and caseins from the protein fraction are excellent emulsifiers and protein supplements. Besides, they can be chemically or enzymatically modified to obtain bioactive peptides with numerous functional and nutritional properties. In this context, valorization techniques of cheese-whey proteins, by-product of dairy industry that constitutes both economic and environmental problems, are being developed. Phospholipids from the milk fat fraction are powerful emulsifiers and also have exclusive nutraceutical properties. In addition, enzyme modification of milk phospholipids makes it possible to tailor emulsifiers with particular properties. However, several aspects remain to be overcome;those refer to a deeper understanding of the healthy, functional and nutritional properties of these new ingredients that might be barriers for its use and acceptability. Additionally, in this review, alternative applications of milk constituents in the non-food area such as in the manufacture of plastic materials and textile fibers are also introduced. The unmet needs, the cross-fertilization in between various protein domains,the carbon footprint requirements, the environmental necessities, the health and wellness new demand, etc., are dominant factors in the search for innovation approaches;these factors are also outlining the further innovation potential deriving from those “apparent” constrains obliging science and technology to take them into account.展开更多
Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out ...Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.
文摘In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.
文摘Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).
文摘The model proposes that Nuclei of all macroobjects (Galaxy clusters, Galaxies, Star clusters, Extrasolar systems) are made up of Dark Matter Particles (DMP). These Nuclei are surrounded by Shells composed of both Dark and Baryonic matter. This model is used to explain various astrophysical phenomena: Multi-wavelength Pulsars;Binary Millisecond Pulsars;Gamma-Ray Bursts;Fast Radio Bursts;Young Stellar Object Dippers;Starburst Galaxies;Gravitational Waves. New types of Fermi Compact Stars made of DMP are introduced: Neutralino star, WIMP star, and DIRAC star. Gamma-Ray Pulsars are rotating Neutralino and WIMP stars. Merger of binary DIRAC stars can be a source of Gravitational waves.
文摘The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded linear growth and with bounded exponential growth using the Akaike information criterion. Thereby the maximum likelihood fits were compared, assuming a lognormal distribution of mass (i.e. a higher variance for heavier animals). Starting from 70+ size-at-age data, the paper focused on 15 data coming from large datasets. Of them, six data with 400 - 20,000 data-points were suitable for sigmoidal growth modeling. For these, a custom-made optimization tool identified the best fitting growth function from the general von Bertalanffy-Pütter class of models. This class generalizes the well-known models of Verhulst (logistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models varied widely, their exponent-pairs displayed a remarkable pattern, as their difference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined a new class of models, for which the paper provided a biological motivation that relates growth to food consumption.
文摘The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].
文摘Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
基金supported by the National Natural Science Foundation of China,No.30672136(to HPL)
文摘Some studies have suggested that early surgical treatment can effectively improve the prognosis of cervical spinal cord injury without radiological abnormality, but no research has focused on the development of a prognostic model of cervical spinal cord injury without radiological abnormality. This retrospective analysis included 43 patients with cervical spinal cord injury without radiological abnormality. Seven potential factors were assessed: age, sex, external force strength causing damage, duration of disease, degree of cervical spinal stenosis, Japanese Orthopaedic Association score, and physiological cervical curvature. A model was established using multiple binary logistic regression analysis. The model was evaluated by concordant profiling and the area under the receiver operating characteristic curve. Bootstrapping was used for internal validation. The prognostic model was as follows: logit(P) =-25.4545 + 21.2576 VALUE + 1.2160SCORE-3.4224 TIME, where VALUE refers to the Pavlov ratio indicating the extent of cervical spinal stenosis, SCORE refers to the Japanese Orthopaedic Association score(0–17) after the operation, and TIME refers to the disease duration(from injury to operation). The area under the receiver operating characteristic curve for all patients was 0.8941(95% confidence interval, 0.7930–0.9952). Three factors assessed in the predictive model were associated with patient outcomes: a great extent of cervical stenosis, a poor preoperative neurological status, and a long disease duration. These three factors could worsen patient outcomes. Moreover, the disease prognosis was considered good when logit(P) ≥-2.5105. Overall, the model displayed a certain clinical value. This study was approved by the Biomedical Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University, China(approval number: 2018063) on May 8, 2018.
基金supported by the National Natural Science Foundation of China,No.81671221(to RCJ)
文摘The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters.In this study,we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences.The severe controlled cortical impact model was produced by an electronic controlled cortical impact device,while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube.Body temperature and mortality were recorded,and neurological deficits were assessed with the modified neurological severity score.Brain edema and bloodbrain barrier damage were evaluated by assessing brain water content and Evans blue extravasation.In addition,a cytokine array kit was used to detect inflammatory cytokines.Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining.Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations.More severe motor dysfunction was observed in the severe controlled cortical impact model,while more severe cognitive dysfunction was observed in the severe free weight drop model.Brain edema,inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group.The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage,with higher mortality and lower repeatability compared with the severe controlled cortical impact group.Severe brainstem damage was not found in the severe controlled cortical impact model.These results indicate that the severe controlled cortical impact model is relatively more stable,more reproducible,and shows obvious cerebral pathological changes at an earlier stage.Therefore,the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury,while the severe free weight drop model may be more apt for studies on diffuse axonal injury.All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University,China(approval No.IRB2012-028-02)in Febru ary 2012.
文摘The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
文摘A simplified model is proposed for an easy understanding of the coarse-grained technique and for achieving a first approximation to the behavior of gases. A mole of a gas substance, within a cubic container, is represented by six particles symmetrically moving. The impacts of particles on container walls, the inter-particle collisions, as well as the volume of particles and the inter-particle attractive forces, obeying a Lennard-Jones curve, are taken into account. Thanks to the symmetry, the problem is reduced to the nonlinear dynamic analysis of a SDOF oscillator, which is numerically solved by a step-by-step time integration algorithm. Five applications of proposed model, on Carbon Dioxide, are presented: 1) Ideal gas in STP conditions. 2) Real gas in STP conditions. 3) Condensation for small molar volume. 4) Critical point. 5) Iso-kinetic energy curves and iso-therms in the critical point region. Results of the proposed model are compared with test data and results of the Van der Waals model for real gases.
基金the phased achievement of the social science research project of Shandong Province:Research on industrial transformation and upgrading of equipment manufacturing industry in Shandong Province(No:13CJJJ02)
文摘Small and medium-sized enterprises have developed rapidly under the guidance and support of the national industrial policy.Because of the influence of the post financial crisis,the rate of the global economy development decreased and the market competition increased,the profit of small and medium-sized enterprises is on the decline or even in a loss.The paper,based on the value creation logic of Balanced Score Card,put forward that we should,with the Differentiation Strategy as the basis,using Strategy Map and Cascade Strategy,integrate the key internal procedures to increase the strategic preparation of intangible assets to guide the business model innovation of small and medium-sized enterprises and promote the rapid development of small and medium-sized enterprises.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
文摘The unique composition of milk makes this basic foodstuff into an exceptional raw material for the production of new ingredients with desired properties and diverse applications in the food industry. The fractionation of milk is the key in the development of those ingredients and products;hence continuous research and development on this field, especially various levels of fractionation and separation by filtration, have been carried out. This review focuses on the production of milk fractions as well as their particular properties, applications and processes that increase their exploitation. Whey proteins and caseins from the protein fraction are excellent emulsifiers and protein supplements. Besides, they can be chemically or enzymatically modified to obtain bioactive peptides with numerous functional and nutritional properties. In this context, valorization techniques of cheese-whey proteins, by-product of dairy industry that constitutes both economic and environmental problems, are being developed. Phospholipids from the milk fat fraction are powerful emulsifiers and also have exclusive nutraceutical properties. In addition, enzyme modification of milk phospholipids makes it possible to tailor emulsifiers with particular properties. However, several aspects remain to be overcome;those refer to a deeper understanding of the healthy, functional and nutritional properties of these new ingredients that might be barriers for its use and acceptability. Additionally, in this review, alternative applications of milk constituents in the non-food area such as in the manufacture of plastic materials and textile fibers are also introduced. The unmet needs, the cross-fertilization in between various protein domains,the carbon footprint requirements, the environmental necessities, the health and wellness new demand, etc., are dominant factors in the search for innovation approaches;these factors are also outlining the further innovation potential deriving from those “apparent” constrains obliging science and technology to take them into account.
文摘Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.