期刊文献+
共找到303篇文章
< 1 2 16 >
每页显示 20 50 100
Constraint-induced movement therapy enhances angiogenesis and neurogenesis after cerebral ischemia/reperfusion 被引量:24
1
作者 Zhi-Yong Zhai Juan Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1743-1754,共12页
Constraint-induced movement therapy after cerebral ischemia stimulates axonal growth by decreasing expression levels of Nogo-A,RhoA,and Rho-associated kinase(ROCK)in the ischemic boundary zone.However,it remains uncle... Constraint-induced movement therapy after cerebral ischemia stimulates axonal growth by decreasing expression levels of Nogo-A,RhoA,and Rho-associated kinase(ROCK)in the ischemic boundary zone.However,it remains unclear if there are any associations between the Nogo-A/RhoA/ROCK pathway and angiogenesis in adult rat brains in pathological processes such as ischemic stroke.In addition,it has not yet been reported whether constraint-induced movement therapy can promote angiogenesis in stroke in adult rats by overcoming Nogo-A/RhoA/ROCK signaling.Here,a stroke model was established by middle cerebral artery occlusion and reperfusion.Seven days after stroke,the following treatments were initiated and continued for 3 weeks:forced limb use in constraint-induced movement therapy rats(constraint-induced movement therapy group),intraperitoneal infusion of fasudil(a ROCK inhibitor)in fasudil rats(fasudil group),or lateral ventricular injection of NEP1-40(a specific antagonist of the Nogo-66 receptor)in NEP1-40 rats(NEP1-40 group).Immunohistochemistry and western blot assay results showed that,at 2 weeks after middle cerebral artery occlusion,expression levels of RhoA and ROCK were lower in the ischemic boundary zone in rats treated with NEP1-40 compared with rats treated with ischemia/reperfusion or constraint-induced movement therapy alone.However,at 4 weeks after middle cerebral artery occlusion,expression levels of RhoA and ROCK in the ischemic boundary zone were markedly decreased in the NEP1-40 and constraint-induced movement therapy groups,but there was no difference between these two groups.Compared with the ischemia/reperfusion group,modified neurological severity scores and foot fault scores were lower and time taken to locate the platform was shorter in the constraint-induced movement therapy and fasudil groups at 4 weeks after middle cerebral artery occlusion,especially in the constraint-induced movement therapy group.Immunofluorescent staining demonstrated that fasudil promoted an immune response of nerve-regeneration-related markers(BrdU in combination with CD31(platelet endothelial cell adhesion molecule),Nestin,doublecortin,NeuN,and glial fibrillary acidic protein)in the subventricular zone and ischemic boundary zone ipsilateral to the infarct.After 3 weeks of constraint-induced movement therapy,the number of regenerated nerve cells was noticeably increased,and was accompanied by an increased immune response of tight junctions(claudin-5),a pericyte marker(a-smooth muscle actin),and vascular endothelial growth factor receptor 2.Taken together,the results demonstrate that,compared with fasudil,constraint-induced movement therapy led to stronger angiogenesis and nerve regeneration ability and better nerve functional recovery at 4 weeks after cerebral ischemia/reperfusion.In addition,constraint-induced movement therapy has the same degree of inhibition of RhoA and ROCK as NEP1-40.Therefore,constraint-induced movement therapy promotes angiogenesis and neurogenesis after cerebral ischemia/reperfusion injury,at least in part by overcoming the Nogo-A/RhoA/ROCK signaling pathway.All protocols were approved by the Institutional Animal Care and Use Committee of China Medical University,China on December 9,2015(approval No.2015 PS326 K). 展开更多
关键词 nerve REGENERATION constraint-induced movement therapy ANGIOGENESIS ISCHEMIA/REPERFUSION subventricular zone NOGO-A FASUDIL NEUROVASCULAR unit tight junction protein vascular endothelial growth factor receptor 2 neural REGENERATION
下载PDF
Early constraint-induced movement therapy affects behavior and neuronal plasticity in ischemia-injured rat brains 被引量:12
2
作者 Xi-Hua Liu Hong-Yan Bi +2 位作者 Jie Cao Shuo Ren Shou-Wei Yue 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期775-782,共8页
Constraint-induced movement therapy is an effective rehabilitative training technique used to improve the restoration of impaired upper extremity movement after stroke. However, whether constraint-induced movement the... Constraint-induced movement therapy is an effective rehabilitative training technique used to improve the restoration of impaired upper extremity movement after stroke. However, whether constraint-induced movement therapy is more effective than conventional rehabilitation in acute or sub-acute stroke remains controversial. The aim of the present study was to identify the optimal time to start constraint-induced movement therapy after ischemic stroke and to explore the mechanisms by which constraint-induced movement therapy leads to post-stroke recovery. Sixty-four adult male Sprague-Dawley rats were randomly divided into four groups: sham-surgery group, cerebral ischemia/reperfusion group, early constraint-induced movement therapy group, and late constraint-induced movement therapy group. Rat models of left middle cerebral artery occlusion were established according to the Zea Longa line embolism method. Constraint-induced movement therapy was conducted starting on day 1 or day 14 in the early constraint-induced movement therapy and late constraint-induced movement therapy groups, respectively. To explore the effect of each intervention time on neuromotor function, behavioral function was assessed using a balance beam walking test before surgery and at 8 and 21 days after surgery. The expression levels of brain-derived neurotrophic factor, nerve growth factor and Nogo receptor were evaluated using real time-polymerase chain reaction and western blot assay to assess the effect of each intervention time. The results showed that the behavioral score was significantly lower in the early constraint-induced movement therapy group than in the cerebral ischemia/reperfusion and late constraint-induced movement therapy groups at 8 days. At 21 days, the scores had significantly decreased in the early constraint-induced movement therapy and late constraint-induced movement therapy groups. At 8 days, only mild pyknosis appeared in neurons of the ischemic penumbra in the early constraint-induced movement therapy group, which was distinctly better than in the cerebral ischemia/reperfusion group. At 21 days, only a few vacuolated cells were observed and no obvious inflammatory cells were visible in late constraint-induced movement therapy group, which was much better than at 8 days. The mRNA and protein expression levels of brain-derived neurotrophic factor and nerve growth factor were significantly higher, but expression levels of Nogo receptor were significantly lower in the early constraint-induced movement therapy group compared with the cerebral ischemia/reperfusion and late constraint-induced movement therapy groups at 8 days. The changes in expression levels at 21 days were larger but similar in both the early constraint-induced movement therapy and late constraint-induced movement therapy groups. Besides, the protein nerve growth factor level was higher in the late constraint-induced movement therapy group than in the early constraint-induced movement therapy group at 21 days. These results suggest that both early(1 day) and late(14 days) constraint-induced movement therapy induces molecular plasticity and facilitates functional recovery after ischemic stroke, as illustrated by the histology. The mechanism may be associated with downregulation of Nogo receptor expression and upregulation of brain-derived neurotrophic factor and nerve growth factor expression. 展开更多
关键词 NERVE REGENERATION ischemic stroke rehabilitation constraint-induced movement therapy NERVE growth factors functional recovery neuronal plasticity real time-polymerase chain reaction western BLOT assay rats neural REGENERATION
下载PDF
Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases 被引量:6
3
作者 Yuan Qu Yi Liu +2 位作者 Ahmed Fayyaz Noor Johnathan Tran Rui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期931-938,共8页
Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or ... Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to delay or possibly stop further progression of the neurodegenerative disease in affected patients. Adeno-associated virus has been the vector of choice in recent clinical trials of therapies for neurodegenerative diseases due to its safety and efficiency in mediating gene transfer to the central nervous system. This review aims to discuss and summarize the progress and clinical applications of adeno-associated virus in neurodegenerative disease in central nervous system. Results from some clinical trials and successful cases of central neurodegenerative diseases deserve further study and exploration. 展开更多
关键词 nerve REGENERATION central nervous system gene therapy NEURODEGENERATIVE DISEASE viral vector ADENO-ASSOCIATED virus Alzheimers DISEASE Parkinsons DISEASE Huntingtons DISEASE amyotrophic lateral SCLEROSIS spinal muscular atrophy neural REGENERATION
下载PDF
Neural regeneration by regionally induced stem cells within poststroke brains: Novel therapy perspectives for stroke patients
4
作者 Takayuki Nakagomi Toshinori Takagi +2 位作者 Mikiya Beppu Shinichi Yoshimura Tomohiro Matsuyama 《World Journal of Stem Cells》 SCIE 2019年第8期452-463,共12页
Ischemic stroke is a critical disease which causes serious neurological functional loss such as paresis. Hope for novel therapies is based on the increasing evidence of the presence of stem cell populations in the cen... Ischemic stroke is a critical disease which causes serious neurological functional loss such as paresis. Hope for novel therapies is based on the increasing evidence of the presence of stem cell populations in the central nervous system (CNS) and the development of stem-cell-based therapies for stroke patients. Although mesenchymal stem cells (MSCs) represented initially a promising cell source, only a few transplanted MSCs were present near the injured areas of the CNS. Thus, regional stem cells that are present and/or induced in the CNS may be ideal when considering a treatment following ischemic stroke. In this context, we have recently showed that injury/ischemia-induced neural stem/progenitor cells (iNSPCs) and injury/ischemia-induced multipotent stem cells (iSCs) are present within post-stroke human brains and post-stroke mouse brains. This indicates that iNSPCs/iSCs could be developed for clinical applications treating patients with stroke. The present study introduces the traits of mouse and human iNSPCs, with a focus on the future perspective for CNS regenerative therapies using novel iNSPCs/iSCs. 展开更多
关键词 Ischemic STROKE STROKE patients Central nervous system neural stem/progenitor CELLS MULTIPOTENT STEM CELLS Stem-cell-based therapies
下载PDF
Current status and future prospects of stem cell therapy in Alzheimer’s disease 被引量:7
5
作者 Fu-Qiang Zhang Jin-Lan Jiang +3 位作者 Jing-Tian Zhang Han Niu Xue-Qi Fu Lin-Lin Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期242-250,共9页
Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only al... Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer’s disease, and the current state of stem cell transplantation in the treatment of Alzheimer’s disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer’s disease. 展开更多
关键词 Alzheimer's disease β-amyloid drug development embryonic STEM CELLS induced PLURIPOTENT STEM CELLS mesenchymal STEM CELLS nerve REGENERATION neural REGENERATION neural STEM CELLS NEURODEGENERATIVE disorders STEM cell therapy
下载PDF
Safety of intrathecal injection of Wharton's jellyderived mesenchymal stem cells in amyotrophic lateral sclerosis therapy 被引量:1
6
作者 Monika Barczewska Mariusz Grudniak +5 位作者 Stanis?aw Maksymowicz Tomasz Siwek Tomasz O?dak Katarzyna Jezierska-Wo?niak Dominika G?adysz Wojciech Maksymowicz 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第2期313-318,共6页
Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have b... Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have been shown to exhibit prospects in the treatment of amyotrophic lateral sclerosis. However, the safety of their clinical application needs to be validated. To investigate the safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy, 43 patients(16 females and 27 males, mean age of 57.3 years) received an average dose of 0.42 × 106 cells/kg through intrathecal administration at the cervical, thoracic or lumbar region depending on the clinical symptoms. There was a 2 month interval between two injections. The adverse events occurring during a 6-month treatment period were evaluated. No adverse events occurred. Headache occurred in one case only after first injection of stem cells. This suggests that intrathecal injection of Wharton's Jelly-derived mesenchymal stem cells is well tolerated in patients with amyotrophic lateral sclerosis. This study was approved by the Bioethical Committee of School of Medicine, University of Warmia and Mazury in Olsztyn, Poland(approval No. 36/2014 and approval No. 8/2016). This study was registered with the ClinicalTrials.gov(identifier: NCT02881476)on August 29, 2016. 展开更多
关键词 amyotrophic lateral sclerosis STEM CELLS therapy INTRATHECAL injections Wharton's jelly-derived mesenchymal STEM CELLS adverse events SAFETY cerebrospinal fluid neural regeneration
下载PDF
Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease
7
作者 Jun Chang Yujiao Li +4 位作者 Xiaoqian Shan Xi Chen Xuhe Yan Jianwei Liu Lan Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期619-628,共10页
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime... Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic. 展开更多
关键词 Alzheimers disease amyloid-β cell therapy extracellular vesicle neural stem cell synaptic plasticity tau
下载PDF
Identification of microRNAs and messenger RNAs involved in human umbilical cord mesenchymal stem cell treatment of ischemic cerebral infarction using integrated bioinformatics analysis 被引量:13
8
作者 Yin-Meng Qu Xin Sun +3 位作者 Xiu-Li Yan Hang Jin Zhen-Ni Guo Yi Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第9期1610-1616,共7页
In recent years,a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell(hUMSC)transplants for the treatment of ischemic cerebral infarction.These genes are i... In recent years,a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell(hUMSC)transplants for the treatment of ischemic cerebral infarction.These genes are involved in various biochemical processes,but the role of microRNAs(miRNAs)in this process is still unclear.From the Gene Expression Omnibus(GEO)database,we downloaded two microarray datasets for GSE78731(messenger RNA(mRNA)profile)and GSE97532(miRNA profile).The differentially expressed genes screened were compared between the hUMSC group and the middle cerebral artery occlusion group.Gene ontology enrichment and pathway enrichment analyses were subsequently conducted using the online Database for Annotation,Visualization,and Integrated Discovery.Identified genes were applied to perform weighted gene co-suppression analyses,to establish a weighted co-expression network model.Furthermore,the protein-protein interaction network for differentially expressed genes from turquoise modules was built using Cytoscape(version 3.40)and the most highly correlated subnetwork was extracted from the protein-protein interaction network using the MCODE plugin.The predicted target genes for differentially expressed miRNAs were also identified using the online database starBase v3.0.A total of 3698 differentially expressed genes were identified.Gene ontology analysis demonstrated that differentially expressed genes that are related to hUMSC treatment of ischemic cerebral infarction are involved in endocytosis and inflammatory responses.We identified 12 differentially expressed miRNAs in middle cerebral artery occlusion rats after hUMSC treatment,and these differentially expressed miRNAs were mainly involved in signaling in inflammatory pathways,such as in the regulation of neutrophil migration.In conclusion,we have identified a number of differentially expressed genes and differentially expressed mRNAs,miRNA-mRNAs,and signaling pathways involved in the hUMSC treatment of ischemic cerebral infarction.Bioinformatics and interaction analyses can provide novel clues for further research into hUMSC treatment of ischemic cerebral infarction. 展开更多
关键词 nerve REGENERATION ischemic cerebral infarction human umbilical cord mesenchymal STEM CELL TREATMENT bioinformatics analysis DIFFERENTIALLY EXPRESSED genes DIFFERENTIALLY EXPRESSED mRNAs inflammatory response STEM CELL therapy weighted gene co-suppression analysis WGCNA protein-protein interaction network PPI hUMSC neural REGENERATION
下载PDF
Monitoring maturation of neural stem cell grafts within a host microenvironment
9
作者 Olga Kopach 《World Journal of Stem Cells》 SCIE 2019年第11期982-989,共8页
Neural stem cells(NSC)act as a versatile tool for neuronal cell replacement strategies to treat neurodegenerative disorders in which functional neurorestorative mechanisms are limited.While the beneficial effects of s... Neural stem cells(NSC)act as a versatile tool for neuronal cell replacement strategies to treat neurodegenerative disorders in which functional neurorestorative mechanisms are limited.While the beneficial effects of such cellbased therapy have already been documented in terms of neurodegeneration of various origins,a neurophysiological basis for improvement in the recovery of neurological function is still not completely understood.This overview briefly describes the cumulative evidence from electrophysiological studies of NSCderived neurons,aimed at establishing the maturation of differentiated neurons within a host microenvironment,and their integration into the host circuits,with a particular focus on the neurogenesis of NSC grafts within the post-ischemic milieu.Overwhelming evidence demonstrates that the host microenvironment largely regulates the lineage of NSC grafts.This regulatory role,as yet underestimated,raises possibilities for the favoured maturation of a subset of neural phenotypes in order to gain timely remodelling of the impaired brain tissue and amplify the therapeutic effects of NSC-based therapy for recovery of neurological function. 展开更多
关键词 neural STEM cells Embryonic progenitors NEUROGENESIS MATURATION of neurophysiological properties Integration into network neural STEM cell therapy Neurodegeneration Ischemic injury
下载PDF
Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats 被引量:5
10
作者 Bei Zhang Qiang He +4 位作者 Ying-ying Li Ce Li Yu-long Bai Yong-shan Hu Feng Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期2004-2010,共7页
Motor function impairment is a common outcome of stroke.Constraint-induced movement therapy(CIMT)involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effe... Motor function impairment is a common outcome of stroke.Constraint-induced movement therapy(CIMT)involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of'learned non-use'and improve limb function after stroke.However,the underlying mechanism of CIMT remains unclear.In the present study,rats were randomly divided into a middle cerebral artery occlusion(model)group,a CIMT+model(CIMT)group,or a sham group.Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups.Compared with the model group,CIMT significantly improved the forelimb functional performance in rats.By western blot assay,the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group,and was similar to sham group levels.These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi. 展开更多
关键词 nerve regeneration constraint-induced movement therapy mitogen-activated proteinkinase signaling system brain ischemia locomotion recovery CORTEX hippocampus middle cerebralartery occlusion foot fault test balance beam walking RATS NSFC grants neural regeneration
下载PDF
Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation 被引量:33
11
作者 Xin Geng Tao Sun +3 位作者 Jing-hui Li Ning Zhao Yong Wang Hua-lin Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期394-403,共10页
Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped fo... Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped for 60 seconds. Dazhui (GV14) and Mingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres- sion of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem ceils. 展开更多
关键词 nerve regeneration spinal cord electroacupuncture therapy neural stem cells notchsignaling pathway ASTROCYTES inflammation survival curve PROLIFERATION differentiation real-timequantitative PCR western blot assay neural regeneration
下载PDF
Establishment and expression of recombinant human glial cell linederived neurotrophic factor and TNF α receptor in human neural stem cells 被引量:2
12
作者 Ke-Xiong Zhuang Wei Huang Bin Yan 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2012年第8期651-655,共5页
Objective:To investigate the interference and expression of human glial cell line-derived neurotrophic factor(hCDNF) and soluble TNF alpha(sTMFRⅠ) receptor genes in neural stem cells and to evaluate the roles of thes... Objective:To investigate the interference and expression of human glial cell line-derived neurotrophic factor(hCDNF) and soluble TNF alpha(sTMFRⅠ) receptor genes in neural stem cells and to evaluate the roles of these proteins in the genetic treatment of spinal cord injury.Methods:Full-length of GDNF cDNA(538 bp) and sTMFRⅠcDNA(504 bp) were inserted into the early 1 region of adenovirus genomic DNA respectively and were immediated by the human cytomegalovirus(gene promoter/enhancer). These adenoviruses were propagated in HEK293 cells via homologous recombination for 7-10 days in vivo,then they were used to infect human neural stem ceils.The infection and expression of gene were tested under immunofluorescence.ELISA and Westem-blot after 48 hours.Results:Almost all the cultured cells showed the nestin immunofluorescence positive staining,which was the characteristics of neural stem cell.A great quantity of EGFP and KFP were observed in neural stem cells,which indicated the expression of GDNF and sTMFRⅠ.After transfection of GDNF and sTMFRⅠgenes,many neural stem cells show GFAP and tubulin immunofluorescence positive staining,which meant that most neural stem cells differentiated into neuron at that condition.Conclusions:The infective efficiency of adenovirus is greatly acceptable to neural stem cell,thus adenovirus provide a useful vector for exogenous GDNF and sTMFRⅠgenes expressing in neural stem cells,which is useful for differentiation of neural stem cell. 展开更多
关键词 GLIAL cell line-derived NEUROTROPHIC FACTOR Tumor NECROSIS FACTOR receptor neural stem cells Gene therapy
下载PDF
Decreased numbers of circulating endothelial progenitor cells are associated with hyperglycemia in patients with traumatic brain injury 被引量:4
13
作者 Hui-Jie Wei Li Liu +7 位作者 Fang-Lian Chen Dong Wang Liang Wang Zeng-Guang Wang Rong-Cai Jiang Jing-Fei Dong Jie-Li Chen Jian-Ning Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期984-990,共7页
Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function.However, the relationship between blood glucose levels and endothelial progenitor c... Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function.However, the relationship between blood glucose levels and endothelial progenitor cells in peripheral blood of patients with traumatic brain injury is unclear. In this study, 101 traumatic brain injury patients admitted to the Department of Neurosurgery, Tianjin Medical University General Hospital or the Department of Neurosurgery, Tianjin Huanhu Hospital, China, were enrolled from April 2005 to March 2007. The number of circulating endothelial progenitor cells and blood glucose levels were measured at 1, 4, 7, 14 and 21 days after traumatic brain injury by flow cytometry and automatic biochemical analysis, respectively. The number of circulating endothelial progenitor cells and blood sugar levels in 37 healthy control subjects were also examined. Compared with controls, the number of circulating endothelial progenitor cells in traumatic brain injury patients was decreased at 1 day after injury, and then increased at 4 days after injury,and reached a peak at 7 days after injury. Compared with controls, blood glucose levels in traumatic brain injury patients peaked at 1 day and then decreased until 7 days and then remained stable. At 1, 4, and 7 days after injury, the number of circulating endothelial progenitor cells was negatively correlated with blood sugar levels(r =-0.147, P < 0.05). Our results verify that hyperglycemia in patients with traumatic brain injury is associated with decreased numbers of circulating endothelial progenitor cells. This study was approved by the Ethical Committee of Tianjin Medical University General Hospital, China(approval No. 200501) in January 2015. 展开更多
关键词 nerve REGENERATION endothelial PROGENITOR cells VASCULAR repair VASCULAR remodeling angiogenesis NEOVASCULARIZATION blood glucose HYPERGLYCEMIA traumatic BRAIN injury mobilization suppression senescence alternative therapy BRAIN damage neural REGENERATION
下载PDF
Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging:earlier administration of chelating therapy can reduce the damage to the brain 被引量:2
14
作者 Dusko B.Kozic Igor Petrovic +3 位作者 Marina Svetel Tatjana Pekmezovic Aleksandar Ragaji Vladimir S.Kostic 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第21期1912-1916,共5页
The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson’s disease during the long-term chelating therapy using magnetic resonance imaging and a possible signiifcance of the time ... The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson’s disease during the long-term chelating therapy using magnetic resonance imaging and a possible signiifcance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson’s disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated 〈 24 months from the ifrst symp-toms and group B, where the therapy started≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a signiifcant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P= 0.005 andP=0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be ex-pected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity. 展开更多
关键词 nerve regeneration Wilsons disease diagnostic imaging chelating therapy magnetic resonance imaging delayed diagnosis metabolic disorders copper toxicity hepatic encephalopathy pontine myelinolysis cirrhosis neural regeneration
下载PDF
Metabolic reprogramming: a new option for the treatment of spinal cord injury
15
作者 Jiangjie Chen Jinyang Chen +11 位作者 Chao Yu Kaishun Xia Biao Yang Ronghao Wang Yi Li Kesi Shi Yuang Zhang Haibin Xu Xuesong Zhang Jingkai Wang Qixin Chen Chengzhen Liang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1042-1057,共16页
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ... Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions. 展开更多
关键词 AXONS GLYCOLYSIS metabolic reprogramming metabolism mitochondria neural regeneration NEUROPROTECTION oxidative phosphorylation spinal cord injury therapy
下载PDF
The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke
16
作者 Yiqing Wang Chuheng Chang +2 位作者 Renzhi Wang Xiaoguang Li Xinjie Bao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1998-2003,共6页
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Altho... Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke. 展开更多
关键词 ischemic stroke mesenchymal stem cells metabolomics multilevel omics neural stem/progenitor cells NEUROINFLAMMATION PATHOPHYSIOLOGY proteomics stem cell therapy TRANSCRIPTOMES
下载PDF
Neural stem cell therapy for brain disease 被引量:5
17
作者 Lan Zhao Jian-Wei Liu +1 位作者 Hui-Yan Shi Ya-Min Ma 《World Journal of Stem Cells》 SCIE 2021年第9期1278-1292,共15页
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovasculardiseases, and traumatic brain injuries, are among the major disordersinfluencing human health, currently with no effective therapy. D... Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovasculardiseases, and traumatic brain injuries, are among the major disordersinfluencing human health, currently with no effective therapy. Due to the lowregeneration capacity of neurons, insufficient secretion of neurotrophic factors,and the aggravation of ischemia and hypoxia after nerve injury, irreversible lossof functional neurons and nerve tissue damage occurs. This damage is difficult torepair and regenerate the central nervous system after injury. Neural stem cells(NSCs) are pluripotent stem cells that only exist in the central nervous system.They have good self-renewal potential and ability to differentiate into neurons,astrocytes, and oligodendrocytes and improve the cellular microenvironment.NSC transplantation approaches have been made for various neurodegenerativedisorders based on their regenerative potential. This review summarizes anddiscusses the characteristics of NSCs, and the advantages and effects of NSCs inthe treatment of brain diseases and limitations of NSC transplantation that need tobe addressed for the treatment of brain diseases in the future. 展开更多
关键词 neural stem cell Brain disease therapy Animal experiment Clinical trial Cellular therapy
下载PDF
Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases 被引量:13
18
作者 Sarawut Suksuphew Parinya Noisa 《World Journal of Stem Cells》 SCIE CAS 2015年第2期502-511,共10页
Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, ... Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, and Huntington's disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of agerelated neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients. 展开更多
关键词 Alzheimer's DISEASE Huntington's DISEASE neural stem cells Parkinson's DISEASE Cell therapy NEURODEGENERATIVE diseases
下载PDF
Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery 被引量:3
19
作者 Chuan-gang Peng Shu-quan Zhang +4 位作者 Min-fei Wu Yang Lv Dan-kai Wu Qi Yang Rui Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1477-1482,共6页
Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investi... Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined treatment was more effective in improving hindlimb motor function than either treatment alone; injured spinal tissue showed a greater number of neurite-like structures in the injured spinal tissue, somatosensory and motor evoked potential latencies were notably shorter, and their amplitudes greater, after combination therapy than after monotherapy. These findings indicate that Schwann cell transplantation combined with hyperbaric oxygen therapy is more effective than either treatment alone in promoting the recovery of spinal cord in rats after injury. 展开更多
关键词 nerve regeneration spinal cord injury Schwann cells hyperbaric oxygen therapy rats spinal cord injury TRANSPLANTATION motor function repair central nervous system ELECTROPHYSIOLOGY neural regeneration
下载PDF
Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy 被引量:3
20
作者 Yu Li Ping-Ping Shen Bin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第8期1500-1509,共10页
Spinal cord injury has long been a prominent challenge in the trauma repair process. Spinal cord injury is a research hotspot by virtue of its difficulty to treat and its escalating morbidity. Furthermore, spinal cord... Spinal cord injury has long been a prominent challenge in the trauma repair process. Spinal cord injury is a research hotspot by virtue of its difficulty to treat and its escalating morbidity. Furthermore, spinal cord injury has a long period of disease progression and leads to complications that exert a lot of mental and economic pressure on patients. There are currently a large number of therapeutic strategies for treating spinal cord injury, which range from pharmacological and surgical methods to cell therapy and rehabilitation training. All of these strategies have positive effects in the course of spinal cord injury treatment. This review mainly discusses the problems regarding stem cell therapy for spinal cord injury, including the characteristics and action modes of all relevant cell types. Induced pluripotent stem cells, which represent a special kind of stem cell population, have gained impetus in cell therapy development because of a range of advantages. Induced pluripotent stem cells can be developed into the precursor cells of each neural cell type at the site of spinal cord injury, and have great potential for application in spinal cord injury therapy. 展开更多
关键词 axon regeneration cell therapy functional recovery induced pluripotent stem cell mesenchymal stem cell neural cells neural precursor cell neural stem cell REMYELINATION spinal cord injury stem cells
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部