In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat...In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform.展开更多
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin...The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.展开更多
CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subs...CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.展开更多
A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations gove...A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations governing Rayleigh wave scattering, used to predict the complicated Rayleigh wave field generated by a number of irregular scatters embedded in an elastic half-space. Then, the passive isolation effectiveness of a row of piles for screening Rayleigh wave was studied in detail. The effects of relevant parameters on the screening effectiveness were investigated and analyzed from the perspective of equivalence with in-filled trench. The results show that using a row of rigid piles as wave barrier is more effective than that of flexible ones, and an optimum reduction of vibration can be achieved either by increasing the size of piles or by decreasing the net spacing between the piles. Finally, based on the derived integral equation for Rayleigh wave scattering, the principle of equivalent modeling of the barrier of piles by an in-filled trench is put forward, which simplifies the analysis of vibration isolation by a row of piles.展开更多
Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedan...Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedance function transfer method. Firstly, the sediment under rock-socketed pile was assumed to be fictitious soil pile with the same sectional area. The Rayleigh-Love rode model was used to simulate the rock-socketed pile and the fictitious soil pile with the consideration of the lateral inertial effect of large-diameter pile. The layered surrounding soils and bedrock were modeled by the plane strain model. Then, by virtue of the initial conditions and boundary conditions of the soil pile system, the analytical solution of the vertical dynamic impedance at the head of rock-socketed pile was derived for the arbitrary excitation acting on the pile head. Lastly, based on the presented analytical solution, the effect of sediment properties, bedrock property and lateral inertial effect on the vertical dynamic impedance at rock-socketed pile head were investigated in detail. It is shown that the sediment properties have significant effect on the vertical dynamic impedance at the rock-socketed pile head. The ability of soil-pile system to resist dynamic vertical deformation is weakened with the increase of sediment thickness, but amplified with the increase of shear wave velocity of sediment. The ability of soil pile system to resist dynamic vertical deformation is amplified with the bedrock property improving, but the ability of soil-pile system to resist vertical vibration is weakened with the improvement of bedrock property.展开更多
On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the de...On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.展开更多
Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse...Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.展开更多
This paper aims to deal with the assessment of axial load capacity for cast in place pile foundations, which are made by the earth drill method, by using the data taken from Standard Penetration Tests (SPTs) and Piezo...This paper aims to deal with the assessment of axial load capacity for cast in place pile foundations, which are made by the earth drill method, by using the data taken from Standard Penetration Tests (SPTs) and Piezocone Penetration Tests (CPTUs). These tests were carried out as part of the investigation program for P.N.G. Terminal-Power Plant, near Semani beach, in Hoxhara marsh, in the western part of Albania. The design of axial load capacity of piles is based on empirical formula using SPT and CPTU values. This study presents the results of axial load capacity analysis of cast in place piles by different analytical calculation methods, which are based on in situ tests results, and also referring to the Building Standard Law of Japan. In the end of our work, differences between calculations methods by using different in situ tests results are shown in tables and graphs.展开更多
The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 ...The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition.展开更多
A new small-scale geotechnical physical model in 1-g and unconfined condition, combining the transparent soil, close-range photogrammetry and particle image velocimetry(PIV), was employed, which provides a non-intrusi...A new small-scale geotechnical physical model in 1-g and unconfined condition, combining the transparent soil, close-range photogrammetry and particle image velocimetry(PIV), was employed, which provides a non-intrusively internal deformation measurement approach to monitor the internal deformation of soil caused by expanded-base pile jacking with casing. The transparent soil was made of fused quartz and its refractive index matched blended oil, adding reflective particles(glass beads). Closerange photogrammetry was employed to record the images of the process of casing jacking and extraction in transparent soil, allowing the use of Matlab-based Geo-PIV to figure out the displacement field converted from image space to object space. Analysis of test results indicates that the maximum displacement caused by casing jacking for expandedconical-base pile is decreased by 29% compared with that for expanded-flat-base pile. The main movement happens at the early stage of casing extraction. The maximum displacement caused by casing extraction for the conical base is about 43% of that for the flatbase, while the affected zone caused by casing extraction for the conical base accounts for about 1/3 of that for the flat base. The contraction for horizontal displacements tends to decrease with the depth increasing. By contrast, the contraction under pile base decreases with the increasing of displacement. The displacements generated by jacking a conventional pile having a diameter equal to the casing diameter of the expanded-base pile were comparable to the net displacement taking place due to expanded-base pile installation for the conical base pile.展开更多
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient...This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded...The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded just behind the pile by the jack.In order to get the force of the soil,some earth-pressure boxes were used to get the earth pressure on the side of the piles.The part of the max pressure and the earth pressure was mainly focused under the slip line展开更多
This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding...This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding suction stress under steady-state flow conditions. Suction stress profile is modeled for one layer sand near the ground above the water level under hydrostatic conditions. By definition, the absolute magnitude of suction stress depends on both the magnitude of the effective stress parameter and matric suction itself. Thus, by developing the Rankine’s relations in seismic state, the composing method of active and passive surfaces in sides of unbraced sheet pile is examinated and the effects of soil parameter on those surfaces are evaluated by a similar process. The relations described the quantitative evaluation of lateral earth pressure on sheet pile and the effects of unsaturated layer on bending moment and embedded depth of sheet pile in soil.展开更多
Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. ceme...Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.展开更多
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is...Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.展开更多
The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate wi...The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate with large deflection. Based on the Kirchhoff hypothesis, the governing differential equations and boundary conditions of the deformation of geocell cushion under working load were founded using von Karman method and solved by Galerkin method. On theses bases, the gravel piles and inter-pile soils were assumed as Winkler ground with variable spring stiffness so as to execute the approximate calculation of the residual settlement of the bidirectional reinforced composite foundation. The calculation method was verified by two laboratory experiments concerning settlement of embankments. One experiment was with just geocell cushion installed to treat the soft clay under embankments; another one was with both geocell cushion and gravel piles installed. The results show that the calculated settlement curve and the maximum settlement are closed to the observed ones.展开更多
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi...This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.展开更多
Through the analysis of the sliding failure form of soil mass under the bearing push-extend reamed of Push-extend Multi-under-reamed Pile, in the paper, the law of coulomb-Mohr is used to establish a stress function a...Through the analysis of the sliding failure form of soil mass under the bearing push-extend reamed of Push-extend Multi-under-reamed Pile, in the paper, the law of coulomb-Mohr is used to establish a stress function and the theory of the sliding line is used to establish Prandtl regional stress field, which determines the stress calculating mode of soil mass and provides a theoretical basis for a further study of this type of pile ultimate bearing capacity of soil mass.展开更多
基金National Natural Science Foundation of China under Grand No.41372274
文摘In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform.
基金Project (2007H03) supported by Communications Department of Zhejiang Province
文摘The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.
基金Project(08JJ3111) supported by the Natural Science Foundation of Hunan ProvinceProject(08B025) supported by Scientific Research Fund of Hunan Provincial Education DepartmentProject(2006AA11Z104) supported by the National High-Tech Research and Development Program of China
文摘CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(20130072110016)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations governing Rayleigh wave scattering, used to predict the complicated Rayleigh wave field generated by a number of irregular scatters embedded in an elastic half-space. Then, the passive isolation effectiveness of a row of piles for screening Rayleigh wave was studied in detail. The effects of relevant parameters on the screening effectiveness were investigated and analyzed from the perspective of equivalence with in-filled trench. The results show that using a row of rigid piles as wave barrier is more effective than that of flexible ones, and an optimum reduction of vibration can be achieved either by increasing the size of piles or by decreasing the net spacing between the piles. Finally, based on the derived integral equation for Rayleigh wave scattering, the principle of equivalent modeling of the barrier of piles by an in-filled trench is put forward, which simplifies the analysis of vibration isolation by a row of piles.
基金Projects(51109084/E09070151308234/E08061) supported by the National Natural Science Foundation of China+1 种基金Project(2013J05079) supported by the Natural Science Foundation of Fujian Province,ChinaProject(Z012002) supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Institute of Rock and Soil Mechanics,Chinese Academy of Sciences),China
文摘Based on the fictitious soil pile model, the effect of sediment on the vertical dynamic impedance of rock-socketed pile with large diameter was theoretically studied by means of Laplace transform technique and impedance function transfer method. Firstly, the sediment under rock-socketed pile was assumed to be fictitious soil pile with the same sectional area. The Rayleigh-Love rode model was used to simulate the rock-socketed pile and the fictitious soil pile with the consideration of the lateral inertial effect of large-diameter pile. The layered surrounding soils and bedrock were modeled by the plane strain model. Then, by virtue of the initial conditions and boundary conditions of the soil pile system, the analytical solution of the vertical dynamic impedance at the head of rock-socketed pile was derived for the arbitrary excitation acting on the pile head. Lastly, based on the presented analytical solution, the effect of sediment properties, bedrock property and lateral inertial effect on the vertical dynamic impedance at rock-socketed pile head were investigated in detail. It is shown that the sediment properties have significant effect on the vertical dynamic impedance at the rock-socketed pile head. The ability of soil-pile system to resist dynamic vertical deformation is weakened with the increase of sediment thickness, but amplified with the increase of shear wave velocity of sediment. The ability of soil pile system to resist dynamic vertical deformation is amplified with the bedrock property improving, but the ability of soil-pile system to resist vertical vibration is weakened with the improvement of bedrock property.
基金Projects(51478178,51508181) supported by the National Natural Science Foundation of China
文摘On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.
基金financially supported by the National Key R&D Program of China(No.2018YFC1508601)the Fundamental Research Funds for the Central University(20822041B4038)
文摘Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.
文摘This paper aims to deal with the assessment of axial load capacity for cast in place pile foundations, which are made by the earth drill method, by using the data taken from Standard Penetration Tests (SPTs) and Piezocone Penetration Tests (CPTUs). These tests were carried out as part of the investigation program for P.N.G. Terminal-Power Plant, near Semani beach, in Hoxhara marsh, in the western part of Albania. The design of axial load capacity of piles is based on empirical formula using SPT and CPTU values. This study presents the results of axial load capacity analysis of cast in place piles by different analytical calculation methods, which are based on in situ tests results, and also referring to the Building Standard Law of Japan. In the end of our work, differences between calculations methods by using different in situ tests results are shown in tables and graphs.
文摘The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition.
基金sponsored by the National Natural Science Foundation of China (Project No. 51508282)K. C. Wong Magna Fund in Ningbo University, China Postdoctoral Science Foundation(No.2017M611674)Fundamental Research Funds for the Central Universities (2017B13614)
文摘A new small-scale geotechnical physical model in 1-g and unconfined condition, combining the transparent soil, close-range photogrammetry and particle image velocimetry(PIV), was employed, which provides a non-intrusively internal deformation measurement approach to monitor the internal deformation of soil caused by expanded-base pile jacking with casing. The transparent soil was made of fused quartz and its refractive index matched blended oil, adding reflective particles(glass beads). Closerange photogrammetry was employed to record the images of the process of casing jacking and extraction in transparent soil, allowing the use of Matlab-based Geo-PIV to figure out the displacement field converted from image space to object space. Analysis of test results indicates that the maximum displacement caused by casing jacking for expandedconical-base pile is decreased by 29% compared with that for expanded-flat-base pile. The main movement happens at the early stage of casing extraction. The maximum displacement caused by casing extraction for the conical base is about 43% of that for the flatbase, while the affected zone caused by casing extraction for the conical base accounts for about 1/3 of that for the flat base. The contraction for horizontal displacements tends to decrease with the depth increasing. By contrast, the contraction under pile base decreases with the increasing of displacement. The displacements generated by jacking a conventional pile having a diameter equal to the casing diameter of the expanded-base pile were comparable to the net displacement taking place due to expanded-base pile installation for the conical base pile.
文摘This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
文摘The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded just behind the pile by the jack.In order to get the force of the soil,some earth-pressure boxes were used to get the earth pressure on the side of the piles.The part of the max pressure and the earth pressure was mainly focused under the slip line
文摘This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding suction stress under steady-state flow conditions. Suction stress profile is modeled for one layer sand near the ground above the water level under hydrostatic conditions. By definition, the absolute magnitude of suction stress depends on both the magnitude of the effective stress parameter and matric suction itself. Thus, by developing the Rankine’s relations in seismic state, the composing method of active and passive surfaces in sides of unbraced sheet pile is examinated and the effects of soil parameter on those surfaces are evaluated by a similar process. The relations described the quantitative evaluation of lateral earth pressure on sheet pile and the effects of unsaturated layer on bending moment and embedded depth of sheet pile in soil.
文摘Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.
基金sponsored by the National Natural Science Foundation of China(51578467)
文摘Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.
文摘The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate with large deflection. Based on the Kirchhoff hypothesis, the governing differential equations and boundary conditions of the deformation of geocell cushion under working load were founded using von Karman method and solved by Galerkin method. On theses bases, the gravel piles and inter-pile soils were assumed as Winkler ground with variable spring stiffness so as to execute the approximate calculation of the residual settlement of the bidirectional reinforced composite foundation. The calculation method was verified by two laboratory experiments concerning settlement of embankments. One experiment was with just geocell cushion installed to treat the soft clay under embankments; another one was with both geocell cushion and gravel piles installed. The results show that the calculated settlement curve and the maximum settlement are closed to the observed ones.
文摘This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.
文摘Through the analysis of the sliding failure form of soil mass under the bearing push-extend reamed of Push-extend Multi-under-reamed Pile, in the paper, the law of coulomb-Mohr is used to establish a stress function and the theory of the sliding line is used to establish Prandtl regional stress field, which determines the stress calculating mode of soil mass and provides a theoretical basis for a further study of this type of pile ultimate bearing capacity of soil mass.