We study a vacation queueing system with a single server simultaneously dealing with an M/G/1 and an M/D/1 queue. Two classes of units, priority and non-priority, arrive at the system in two independent Poisson stream...We study a vacation queueing system with a single server simultaneously dealing with an M/G/1 and an M/D/1 queue. Two classes of units, priority and non-priority, arrive at the system in two independent Poisson streams. Under a non-preemptive priority rule, the server provides a general service to the priority units and a deterministic service to the non-priority units. We further assume that the server may take a vacation of random length just after serving the last priority unit present in the system. We obtain steady state queue size distribution at a random epoch. Corresponding results for some special cases, including the known results of the M/G/1 and the M/D/1 queues, have been derived.展开更多
It is well known, in queueing theory, that the system performance is greatly influenced by scheduling policy. No universal optimum scheduling strategy exists in systems where individual customer service demands are no...It is well known, in queueing theory, that the system performance is greatly influenced by scheduling policy. No universal optimum scheduling strategy exists in systems where individual customer service demands are not known a priori. However, if the distribution of job times is known, then the residual time (expected time remaining for a job), based on the service it has already received, can be calculated. Our particular research contribution is in exploring the use of this function to enhance system performance by increasing the probability that a job will meet its deadline. In a detailed discrete event simulation, we have tested many different distributions with a wide range of C2 and shapes, as well as for single and dual processor system. Results of four distributions are reported here. We compare with RR and FCFS, and find that in all distributions studied our algorithm performs best. In the study of the use of two slow servers versus one fast server, we have discovered that they provide comparable performance, and in a few cases the double server system does better.展开更多
Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rate...Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.展开更多
With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative worki...With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative working among manufacturing resources, and task scheduling is one of the most critical components in this system. Nevertheless, the Globus Resource Allocation Manager (GRAM) does not provide scheduling system by default, and traditional performance-guided or economy-guided schedulers cannot satisfy our needs in MG. So, in this paper, a TQCS (Time, Quality, Cost, Service)-based scheduling approach is presented and the corresponding scheduler (Manufacturing Grid Task Scheduler, MGTS) is implemented with the functions of Global Process Planning (GPP) analyzing, resource discovery, resource selection, AHP (Analytic Hierarchy Process)-based resource mapping, and fault-tolerant handling. Furthermore, the application architecture is depicted at the end of the paper to illustrate the utilization of our scheduler.展开更多
The number of tardy jobs of the single machine scheduling problem with a variable processing time is studied in accordance with the published instances of traffic transportation management engineering. It is proved ...The number of tardy jobs of the single machine scheduling problem with a variable processing time is studied in accordance with the published instances of traffic transportation management engineering. It is proved by 3 partition problem that if the problem is of ready time and common deadline constrained, its complexity is NP hard in the strong sense. Finally, a polynomial algorithm for solving unit processing time and common deadline problems is proposed.展开更多
We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the fo...We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.展开更多
In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives:...In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.展开更多
Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e....Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.展开更多
We study a batch arrival MX/M/1 queue with multiple working vacation. The server serves customers at a lower rate rather than completely stopping service during the service period. Using a quasi upper triangular trans...We study a batch arrival MX/M/1 queue with multiple working vacation. The server serves customers at a lower rate rather than completely stopping service during the service period. Using a quasi upper triangular transition probability matrix of two-dimensional Markov chain and matrix analytic method, the probability generating function (PGF) of the stationary system length distribution is obtained, from which we obtain the stochastic decomposition structure of system length which indicates the relationship with that of the MX/M/1 queue without vacation. Some performance indices are derived by using the PGF of the stationary system length distribution. It is important that we obtain the Laplace Stieltjes transform (LST) of the stationary waiting time distribution. Further, we obtain the mean system length and the mean waiting time. Finally, numerical results for some special cases are presented to show the effects of system parameters.展开更多
Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with the problem of scheduling jobs with a common due date. A four person game illustrates the basic ...Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with the problem of scheduling jobs with a common due date. A four person game illustrates the basic ideas and the computational difficulties.展开更多
Task scheduling is a key problem for the distributed computation. This thesis analyzes receiver initiated(RI) task scheduling algorithm, finds its weakness and presents an improved algorithm PRI algorithm. This algo...Task scheduling is a key problem for the distributed computation. This thesis analyzes receiver initiated(RI) task scheduling algorithm, finds its weakness and presents an improved algorithm PRI algorithm. This algorithm schedules the concurrent tasks onto network of workstation dynamically at runtime, and initiates task scheduling by the node of low load. The threshold on each node can be modified according to the system information which is periodically detected. Meanwhile, the detecting period can be adjusted in terms of the change of the system state. The result of the experiments shows that the PRI algorithm is superior to the RI algorithm.展开更多
We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is called primary;the other member of each pair is called secondary. Each primary joins the queue upon ...We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is called primary;the other member of each pair is called secondary. Each primary joins the queue upon arrival. Each secondary is delayed in a separate area, and joins the queue when “pushed” by the next arriving primary. Thus each secondary joins the queue followed immediately by the next primary. This arrival/delay mechanism appears to be new in queueing theory. Our goal is to obtain the steady-state probability density function (pdf) of the workload, and related quantities of interest. We utilize a typical sample path of the workload process as a physical guide, and simple level crossing theorems, to derive model equations for the steady-state pdf. A potential application is to the processing of electronic signals with error free components and components that require later confirmation before joining the queue. The confirmation is the arrival of the next signal.展开更多
Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential ev...Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential evolution( HDE) algorithm based on greedy constructive procedure( GCP) is proposed,which combines differential evolution( DE) with tabu search( TS). DE is applied to generating the elite individuals of population,while TS is used for finding the optimal value by making perturbation in selected elite individuals. A lower bounding technique is developed to evaluate the quality of proposed algorithm. Experimental results verify the effectiveness and feasibility of proposed algorithm.展开更多
Based on the proportionally fair scheme that Kelly proposed to solve the optimization problems for utility function in networks, and in order to improve the congestion control performance for the queue in router, the ...Based on the proportionally fair scheme that Kelly proposed to solve the optimization problems for utility function in networks, and in order to improve the congestion control performance for the queue in router, the linear and terminal sliding active queue management (AQM) algorithms are designed. Especially in the ter-minal sliding AQM algorithm, a special nonlinear terminal sliding surface is designed in order to force queue length to reach the desired value in finite time. The upper bound of the time is also obtained. Simulation re-sults demonstrate that the proposed congestion algorithm enables the system be better transient and stable performance. At the same time, the robustness is guaranteed.展开更多
In Multi-user MIMO (MU-MIMO) downlink system, suitable user selection schemes can improve spatial diversity gain. In most of previous studies, it is always assumed that the base station (BS) knows full channel state i...In Multi-user MIMO (MU-MIMO) downlink system, suitable user selection schemes can improve spatial diversity gain. In most of previous studies, it is always assumed that the base station (BS) knows full channel state information (CSI) of each user, which does not consider the reality. However, there are only limited feedback bits in real system. Besides, user fairness is often ignored in most of current user selection schemes. To discuss the user fairness and limited feedback, in this paper, the user selection scheme with limited feedback bits is proposed. The BS utilizes codebook precoding transmitting strategy with LTE codebook. Furthermore, this paper analyzes the influence of the number of feedback bits and the number of users on user fairness and system sum capacity. Simulation results show that in order to achieve better user fairness, we can use fewer bits for feedback CSI when the number of user is small, and more feedback bits when the number of users is large.展开更多
Cloud-as-the-center computing paradigms face multiple challenges in the 5G and Internet of Things scenarios, where the service requests are usually initiated by the end-user devices located at network edge and have ri...Cloud-as-the-center computing paradigms face multiple challenges in the 5G and Internet of Things scenarios, where the service requests are usually initiated by the end-user devices located at network edge and have rigid time constraints. Therefore, Fog computing, or mobile edge computing, is introduced as a promising solution to the service provision in the tiered IoT infrastructure to compensate the shortage of traditional cloud-only architecture. In this cloud-to-things continuum, several cloudlet or mobile edge server entities are placed at the access network to handle the task offloading and processing problems at the network edge. This raises the resource scheduling problem in this tiered system, which is vital for the promotion of the system efficiency. Therefore, in this paper, a scheduling mechanism for the cloudlets or fog nodes are presented, which takes the mobile tasks’ deadline and resources requirements at the same time while promoting the overall profit of the system. First, the problem at the cloudlet, to which IoT devices offload their tasks, is formulated as a multi-dimensional 0-1 knapsack problem. Second, based on ant colony optimization, a scheduling algorithm is presented which treat this problem as a subset selection problem. Third, to promote the performance of the system in the dynamic environments,a churn-refined algorithm is further put forward. A series of simulation experiments have shown that out proposal outperforms many state-of-the-art algorithms in both profit and guarantee ratio.展开更多
文摘We study a vacation queueing system with a single server simultaneously dealing with an M/G/1 and an M/D/1 queue. Two classes of units, priority and non-priority, arrive at the system in two independent Poisson streams. Under a non-preemptive priority rule, the server provides a general service to the priority units and a deterministic service to the non-priority units. We further assume that the server may take a vacation of random length just after serving the last priority unit present in the system. We obtain steady state queue size distribution at a random epoch. Corresponding results for some special cases, including the known results of the M/G/1 and the M/D/1 queues, have been derived.
文摘It is well known, in queueing theory, that the system performance is greatly influenced by scheduling policy. No universal optimum scheduling strategy exists in systems where individual customer service demands are not known a priori. However, if the distribution of job times is known, then the residual time (expected time remaining for a job), based on the service it has already received, can be calculated. Our particular research contribution is in exploring the use of this function to enhance system performance by increasing the probability that a job will meet its deadline. In a detailed discrete event simulation, we have tested many different distributions with a wide range of C2 and shapes, as well as for single and dual processor system. Results of four distributions are reported here. We compare with RR and FCFS, and find that in all distributions studied our algorithm performs best. In the study of the use of two slow servers versus one fast server, we have discovered that they provide comparable performance, and in a few cases the double server system does better.
文摘Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.
基金This project is supported by Shanghai Science and Technology Committee (No. 025111055)
文摘With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative working among manufacturing resources, and task scheduling is one of the most critical components in this system. Nevertheless, the Globus Resource Allocation Manager (GRAM) does not provide scheduling system by default, and traditional performance-guided or economy-guided schedulers cannot satisfy our needs in MG. So, in this paper, a TQCS (Time, Quality, Cost, Service)-based scheduling approach is presented and the corresponding scheduler (Manufacturing Grid Task Scheduler, MGTS) is implemented with the functions of Global Process Planning (GPP) analyzing, resource discovery, resource selection, AHP (Analytic Hierarchy Process)-based resource mapping, and fault-tolerant handling. Furthermore, the application architecture is depicted at the end of the paper to illustrate the utilization of our scheduler.
文摘The number of tardy jobs of the single machine scheduling problem with a variable processing time is studied in accordance with the published instances of traffic transportation management engineering. It is proved by 3 partition problem that if the problem is of ready time and common deadline constrained, its complexity is NP hard in the strong sense. Finally, a polynomial algorithm for solving unit processing time and common deadline problems is proposed.
基金Project (No. STE1093/1-1) supported by the German ResearchFoundation, Germany
文摘We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.
文摘In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.
基金the financial support of the National Key Research and Development Plan(2021YFB3302501)the financial support of the National Natural Science Foundation of China(12102077)。
文摘Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.
文摘We study a batch arrival MX/M/1 queue with multiple working vacation. The server serves customers at a lower rate rather than completely stopping service during the service period. Using a quasi upper triangular transition probability matrix of two-dimensional Markov chain and matrix analytic method, the probability generating function (PGF) of the stationary system length distribution is obtained, from which we obtain the stochastic decomposition structure of system length which indicates the relationship with that of the MX/M/1 queue without vacation. Some performance indices are derived by using the PGF of the stationary system length distribution. It is important that we obtain the Laplace Stieltjes transform (LST) of the stationary waiting time distribution. Further, we obtain the mean system length and the mean waiting time. Finally, numerical results for some special cases are presented to show the effects of system parameters.
文摘Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with the problem of scheduling jobs with a common due date. A four person game illustrates the basic ideas and the computational difficulties.
文摘Task scheduling is a key problem for the distributed computation. This thesis analyzes receiver initiated(RI) task scheduling algorithm, finds its weakness and presents an improved algorithm PRI algorithm. This algorithm schedules the concurrent tasks onto network of workstation dynamically at runtime, and initiates task scheduling by the node of low load. The threshold on each node can be modified according to the system information which is periodically detected. Meanwhile, the detecting period can be adjusted in terms of the change of the system state. The result of the experiments shows that the PRI algorithm is superior to the RI algorithm.
文摘We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is called primary;the other member of each pair is called secondary. Each primary joins the queue upon arrival. Each secondary is delayed in a separate area, and joins the queue when “pushed” by the next arriving primary. Thus each secondary joins the queue followed immediately by the next primary. This arrival/delay mechanism appears to be new in queueing theory. Our goal is to obtain the steady-state probability density function (pdf) of the workload, and related quantities of interest. We utilize a typical sample path of the workload process as a physical guide, and simple level crossing theorems, to derive model equations for the steady-state pdf. A potential application is to the processing of electronic signals with error free components and components that require later confirmation before joining the queue. The confirmation is the arrival of the next signal.
基金Shanghai Municipal Natural Science Foundation of China(No.10ZR1431700)
文摘Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential evolution( HDE) algorithm based on greedy constructive procedure( GCP) is proposed,which combines differential evolution( DE) with tabu search( TS). DE is applied to generating the elite individuals of population,while TS is used for finding the optimal value by making perturbation in selected elite individuals. A lower bounding technique is developed to evaluate the quality of proposed algorithm. Experimental results verify the effectiveness and feasibility of proposed algorithm.
文摘Based on the proportionally fair scheme that Kelly proposed to solve the optimization problems for utility function in networks, and in order to improve the congestion control performance for the queue in router, the linear and terminal sliding active queue management (AQM) algorithms are designed. Especially in the ter-minal sliding AQM algorithm, a special nonlinear terminal sliding surface is designed in order to force queue length to reach the desired value in finite time. The upper bound of the time is also obtained. Simulation re-sults demonstrate that the proposed congestion algorithm enables the system be better transient and stable performance. At the same time, the robustness is guaranteed.
文摘In Multi-user MIMO (MU-MIMO) downlink system, suitable user selection schemes can improve spatial diversity gain. In most of previous studies, it is always assumed that the base station (BS) knows full channel state information (CSI) of each user, which does not consider the reality. However, there are only limited feedback bits in real system. Besides, user fairness is often ignored in most of current user selection schemes. To discuss the user fairness and limited feedback, in this paper, the user selection scheme with limited feedback bits is proposed. The BS utilizes codebook precoding transmitting strategy with LTE codebook. Furthermore, this paper analyzes the influence of the number of feedback bits and the number of users on user fairness and system sum capacity. Simulation results show that in order to achieve better user fairness, we can use fewer bits for feedback CSI when the number of user is small, and more feedback bits when the number of users is large.
文摘Cloud-as-the-center computing paradigms face multiple challenges in the 5G and Internet of Things scenarios, where the service requests are usually initiated by the end-user devices located at network edge and have rigid time constraints. Therefore, Fog computing, or mobile edge computing, is introduced as a promising solution to the service provision in the tiered IoT infrastructure to compensate the shortage of traditional cloud-only architecture. In this cloud-to-things continuum, several cloudlet or mobile edge server entities are placed at the access network to handle the task offloading and processing problems at the network edge. This raises the resource scheduling problem in this tiered system, which is vital for the promotion of the system efficiency. Therefore, in this paper, a scheduling mechanism for the cloudlets or fog nodes are presented, which takes the mobile tasks’ deadline and resources requirements at the same time while promoting the overall profit of the system. First, the problem at the cloudlet, to which IoT devices offload their tasks, is formulated as a multi-dimensional 0-1 knapsack problem. Second, based on ant colony optimization, a scheduling algorithm is presented which treat this problem as a subset selection problem. Third, to promote the performance of the system in the dynamic environments,a churn-refined algorithm is further put forward. A series of simulation experiments have shown that out proposal outperforms many state-of-the-art algorithms in both profit and guarantee ratio.