As we all know, cyclic gas injection is one of the most effective development methods to improve condensate oil recovery. When dealing with the calculation of the reserves, the injection-production differences and wat...As we all know, cyclic gas injection is one of the most effective development methods to improve condensate oil recovery. When dealing with the calculation of the reserves, the injection-production differences and water influx create great influence on the accuracy. Based on the existing research, we proposed a new material balance equation which considered the differences of composition between produced and injected fluids and the effect of water influx, and a solution was provided in this paper. The results of the method are closer to the actual situation because they are built on the law of conservation of mass, and the using of curve fitting method can not only avoid the use of water influx coefficient but also obtain the water influx rate and reserves at the same time. The YH-23 gas condensate reservoir is taking as a typical subject to do the research, which has been exploited by cycle gas injection for 14 years. Three different methods are used to calculate the reserves, and the results show that the method proposed in this paper has minimum error of 2.96%.展开更多
This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geother...This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geothermal energy management.With advancing exploitation of geothermal resources deepens,precise understanding of this mechanism becomes paramount for devising effective reinjection strategies,optimizing reservoir utilization,and bolstering the economic viability of geothermal energy development.The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions,and analyzes key factors influ-encing this evolution.It evaluates existing research methods,highlighting their strengths and limitations.The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale,alongside the need for enhanced accuracy in field test results,particularly regarding computational effi-ciency of fractured thermal reservoir models under multi-well reinjection conditions.To address these shortcomings,the study proposes conducting large-scale rock seepage and heat transfer experiments,coupled with multi-tracer techniques for field testing,aimed at optimizing fractured thermal reservoir models'computational efficiency under multi-well reinjection conditions.Additionally,it suggests integrat-ing deep learning methods into research endeavors.These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.展开更多
Mid-deep geothermal reinjection technology is crucial for the sustainable development of geothermal resources,which has garnered significant attention and rapid growth in recent years.Currently,various geothermal rein...Mid-deep geothermal reinjection technology is crucial for the sustainable development of geothermal resources,which has garnered significant attention and rapid growth in recent years.Currently,various geothermal reinjection technologies lag behind,lacking effective integration to address issues like low reinjection rates and thermal breakthrough.This paper reviews the basic principles and development history of mid-deep geothermal reinjection technology,focusing on various technical methods used in the process and analyzing their applicability,advantages,and disadvantages under different geological conditions.It highlights the unique challenges posed by deep geothermal resources,including high temperature,high pressure,high stress,chemical corrosion,and complex geological structures.Additionally,it addresses challenges in equipment selection and durability,system stability and operation safety,environmental impact,and sustainable development.Finally,the paper explores future directions for mid-deep geothermal reinjection technology,highlighting key areas for further research and potential pathways for technological innovation.This comprehensive analysis aims to accelerate the advancement of geothermal reinjection technology,offering essential guidance for the efficient reinjection and sustainable development of geothermal resources.展开更多
In the process of geothermal exploitation and utilization, the reinjection amount of used geothermal water in super-deep and porous reservoir is small and significantly decreases over time. This has been a worldwide p...In the process of geothermal exploitation and utilization, the reinjection amount of used geothermal water in super-deep and porous reservoir is small and significantly decreases over time. This has been a worldwide problem, which greatly restricts the exploitation and utilization of geothermal resources. Based on a large amount of experiments and researches, the reinjection research on the tail water of Xianyang No.2 well, which is carried out by combining the application of hydrogeochemical simulation, clogging mechanism research and the reinjection experiment, has achieved breakthrough results. The clogging mechanism and indoor simulation experiment results show: Factors affecting the tail water reinjection of Xianyang No.2 well mainly include chemical clogging, suspended solids clogging, gas clogging, microbial clogging and composite clogging, yet the effect of particle migration on clogging has not been found; in the process of reinjection, chemical clogging was mainly caused by carbonates(mainly calcite), silicates(mainly chalcedony), and a small amount of iron minerals, and the clogging aggravated when the temperature rose; suspended solids clogging also aggravated when the temperature rose, which showed that particles formed by chemical reaction had a certain proportion in suspended solids.展开更多
The large karst geothermal field of Xiong County,which is located to the south of geothermal field in Niutuozhen,features huge geothermal resources and favorable condition for development and utilization.Because of th...The large karst geothermal field of Xiong County,which is located to the south of geothermal field in Niutuozhen,features huge geothermal resources and favorable condition for development and utilization.Because of the long-term extensive production,the pressure of geothermal reservoir continues to decline and some geothermal wells even face the danger of scrapping.To relieve the fall in pressure of geothermal reservoir and achieve the sustainable development and utilization of geothermal field in the long run,reinjection experiment is conducted in the geothermal field of Xiong County and a three-dimensional hydrothermal coupled numerical model was constructed.The reinjection experiment showed that the mode of one production well and one reinjection well can be achieved in this geothermal field.The numerical simulation is used to forecast and compare the change in pressure field and temperature field under different production and reinjection modes and concludes that the most opotimized production and utilization mode is the concentrated production-reinjection mode,and the most opotimized production-reinjection combination mode is the shallow production and shallow reinjection mode which can ensure the sustainable development and utilization of geothermal resources in the long run.展开更多
To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the g...To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the geological model of the geothermal reinjection demonstration project in Dezhou City. The biological process of porous media clogging was investigated by analyzing the variation of permeability within the medium, the main indexes of nutrient salts, and the content of extracellular polymeric substances (EPS). High-throughput sequencing, based on 16S rRNA, was used to analyze the characteristics and succession of microbial communities during the reinjection of geothermal water. The results of the study show that significant bio-clogging occurs during the reinjection of geothermal water, with an increase in the heterogeneity of the thermal reservoir medium, and a decrease in permeability. The extent of clogging gradually reduces with an increase in seepage path. Thus, thermal reservoir clogging is more serious closer to the water inlet. With an increase in the duration of reinjection, the permeability of the porous medium undergoes three stages: “rapid”, “decline-slow”, and “decrease-stable”. The results show that the richness and diversity of the bacterial community increase and decrease, respectively, during the reinjection process. Bacterial community succession occurs, and the bacterial communities mainly include the Proteobacteria and Bacteroidetes phyla. <em>Pseudomonas</em> and <em>Devosia</em> are respectively the dominant bacteria in the early and late stages of geothermal water reinjection.展开更多
The blockage induced by particle migration and deposition is one of the main reasons for the decrease of reinjection capacity in the porous geothermal reservoir with a low and medium temperature.In this paper,a new dr...The blockage induced by particle migration and deposition is one of the main reasons for the decrease of reinjection capacity in the porous geothermal reservoir with a low and medium temperature.In this paper,a new drilled geothermal well in Xining basin China is taken as an example to investigate the formation blockage risk due to the movable clay and sand particles in pores.The physical properties of the reservoir rocks were analyzed,a series of pumping and reinjection tests were conducted,and the longterm reinjection performance of the well was predicted by numerical simulation based on the test fitting.The results show that the geothermal reservoir rocks are argillaceous and weakly cemented sandstones with a content of movable clay and sand particles up to 0.18–23.42 wt.%.The well presented a high productivity of 935–2186 m3?d-1 at a pressure difference of 0.7–1.62 MPa in the pumping tests associated with a large amount of clay and sand particles produced out,while in the reinjection test,only a low injectivity of 240–480 m3?d-1 was observed at an injection pressure of 0.2–0.6 MPa with the clay and sand particles near the wellbore move into deep.According to the prediction,under conditions of a blockage risk,the injectivity of the well will start to decline after 100 days of injection,and in the third year,it will decrease by 59.00%–77.09%.The influence of invasion of pretreated suspended particles and scale particles can be neglected.Under conditions of a high blockage risk,the injectivity of the well will decrease significantly in the first 20–30 days,with a decline of 75.39%–78.96%.Generally,the higher the injection pressure or rate,the greater the decrease in injectivity of the well caused by particle blockage.Pump lifting is an effective measure to remove the well blockage which can be used regularly.展开更多
文摘As we all know, cyclic gas injection is one of the most effective development methods to improve condensate oil recovery. When dealing with the calculation of the reserves, the injection-production differences and water influx create great influence on the accuracy. Based on the existing research, we proposed a new material balance equation which considered the differences of composition between produced and injected fluids and the effect of water influx, and a solution was provided in this paper. The results of the method are closer to the actual situation because they are built on the law of conservation of mass, and the using of curve fitting method can not only avoid the use of water influx coefficient but also obtain the water influx rate and reserves at the same time. The YH-23 gas condensate reservoir is taking as a typical subject to do the research, which has been exploited by cycle gas injection for 14 years. Three different methods are used to calculate the reserves, and the results show that the method proposed in this paper has minimum error of 2.96%.
基金funded by the National Nature Science Foundation of China(No.42272350)Scientific research project of Hunan Institute of Geology(No.HNGSTP202211)+2 种基金Hunan Province key research and development project(No.2022SK2070)Geological survey project of Department of Natural Resources of Shanxi Province(No.Jinfencai[2021-0009]G009-C05)the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources(No.SX202202).
文摘This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geothermal energy management.With advancing exploitation of geothermal resources deepens,precise understanding of this mechanism becomes paramount for devising effective reinjection strategies,optimizing reservoir utilization,and bolstering the economic viability of geothermal energy development.The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions,and analyzes key factors influ-encing this evolution.It evaluates existing research methods,highlighting their strengths and limitations.The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale,alongside the need for enhanced accuracy in field test results,particularly regarding computational effi-ciency of fractured thermal reservoir models under multi-well reinjection conditions.To address these shortcomings,the study proposes conducting large-scale rock seepage and heat transfer experiments,coupled with multi-tracer techniques for field testing,aimed at optimizing fractured thermal reservoir models'computational efficiency under multi-well reinjection conditions.Additionally,it suggests integrat-ing deep learning methods into research endeavors.These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.
基金funded by the National Nature Science Foundation of China(No.42272350)Hunan Provincial Key R&D Program(2022SK 2070)the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources(No.SX202202).
文摘Mid-deep geothermal reinjection technology is crucial for the sustainable development of geothermal resources,which has garnered significant attention and rapid growth in recent years.Currently,various geothermal reinjection technologies lag behind,lacking effective integration to address issues like low reinjection rates and thermal breakthrough.This paper reviews the basic principles and development history of mid-deep geothermal reinjection technology,focusing on various technical methods used in the process and analyzing their applicability,advantages,and disadvantages under different geological conditions.It highlights the unique challenges posed by deep geothermal resources,including high temperature,high pressure,high stress,chemical corrosion,and complex geological structures.Additionally,it addresses challenges in equipment selection and durability,system stability and operation safety,environmental impact,and sustainable development.Finally,the paper explores future directions for mid-deep geothermal reinjection technology,highlighting key areas for further research and potential pathways for technological innovation.This comprehensive analysis aims to accelerate the advancement of geothermal reinjection technology,offering essential guidance for the efficient reinjection and sustainable development of geothermal resources.
基金funded by National Science Foundation Project in 2015 (No.41472221)
文摘In the process of geothermal exploitation and utilization, the reinjection amount of used geothermal water in super-deep and porous reservoir is small and significantly decreases over time. This has been a worldwide problem, which greatly restricts the exploitation and utilization of geothermal resources. Based on a large amount of experiments and researches, the reinjection research on the tail water of Xianyang No.2 well, which is carried out by combining the application of hydrogeochemical simulation, clogging mechanism research and the reinjection experiment, has achieved breakthrough results. The clogging mechanism and indoor simulation experiment results show: Factors affecting the tail water reinjection of Xianyang No.2 well mainly include chemical clogging, suspended solids clogging, gas clogging, microbial clogging and composite clogging, yet the effect of particle migration on clogging has not been found; in the process of reinjection, chemical clogging was mainly caused by carbonates(mainly calcite), silicates(mainly chalcedony), and a small amount of iron minerals, and the clogging aggravated when the temperature rose; suspended solids clogging also aggravated when the temperature rose, which showed that particles formed by chemical reaction had a certain proportion in suspended solids.
基金supported by Study on the Sustainable Development and Utilization of Geothermal Resource of Xiong County in Niutuozhen Geothermal Field,North China
文摘The large karst geothermal field of Xiong County,which is located to the south of geothermal field in Niutuozhen,features huge geothermal resources and favorable condition for development and utilization.Because of the long-term extensive production,the pressure of geothermal reservoir continues to decline and some geothermal wells even face the danger of scrapping.To relieve the fall in pressure of geothermal reservoir and achieve the sustainable development and utilization of geothermal field in the long run,reinjection experiment is conducted in the geothermal field of Xiong County and a three-dimensional hydrothermal coupled numerical model was constructed.The reinjection experiment showed that the mode of one production well and one reinjection well can be achieved in this geothermal field.The numerical simulation is used to forecast and compare the change in pressure field and temperature field under different production and reinjection modes and concludes that the most opotimized production and utilization mode is the concentrated production-reinjection mode,and the most opotimized production-reinjection combination mode is the shallow production and shallow reinjection mode which can ensure the sustainable development and utilization of geothermal resources in the long run.
文摘To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the geological model of the geothermal reinjection demonstration project in Dezhou City. The biological process of porous media clogging was investigated by analyzing the variation of permeability within the medium, the main indexes of nutrient salts, and the content of extracellular polymeric substances (EPS). High-throughput sequencing, based on 16S rRNA, was used to analyze the characteristics and succession of microbial communities during the reinjection of geothermal water. The results of the study show that significant bio-clogging occurs during the reinjection of geothermal water, with an increase in the heterogeneity of the thermal reservoir medium, and a decrease in permeability. The extent of clogging gradually reduces with an increase in seepage path. Thus, thermal reservoir clogging is more serious closer to the water inlet. With an increase in the duration of reinjection, the permeability of the porous medium undergoes three stages: “rapid”, “decline-slow”, and “decrease-stable”. The results show that the richness and diversity of the bacterial community increase and decrease, respectively, during the reinjection process. Bacterial community succession occurs, and the bacterial communities mainly include the Proteobacteria and Bacteroidetes phyla. <em>Pseudomonas</em> and <em>Devosia</em> are respectively the dominant bacteria in the early and late stages of geothermal water reinjection.
基金supported by the Basic Research Program Project of Qinghai Province(No.2020-ZJ-758)the Special Fund on the Exploration of Clean Energy and Mineral Products in Qinghai Province(20181317146sh 007)partially financed by the General Project of Shandong Natural Science Foundation(ZR2020ME090)。
文摘The blockage induced by particle migration and deposition is one of the main reasons for the decrease of reinjection capacity in the porous geothermal reservoir with a low and medium temperature.In this paper,a new drilled geothermal well in Xining basin China is taken as an example to investigate the formation blockage risk due to the movable clay and sand particles in pores.The physical properties of the reservoir rocks were analyzed,a series of pumping and reinjection tests were conducted,and the longterm reinjection performance of the well was predicted by numerical simulation based on the test fitting.The results show that the geothermal reservoir rocks are argillaceous and weakly cemented sandstones with a content of movable clay and sand particles up to 0.18–23.42 wt.%.The well presented a high productivity of 935–2186 m3?d-1 at a pressure difference of 0.7–1.62 MPa in the pumping tests associated with a large amount of clay and sand particles produced out,while in the reinjection test,only a low injectivity of 240–480 m3?d-1 was observed at an injection pressure of 0.2–0.6 MPa with the clay and sand particles near the wellbore move into deep.According to the prediction,under conditions of a blockage risk,the injectivity of the well will start to decline after 100 days of injection,and in the third year,it will decrease by 59.00%–77.09%.The influence of invasion of pretreated suspended particles and scale particles can be neglected.Under conditions of a high blockage risk,the injectivity of the well will decrease significantly in the first 20–30 days,with a decline of 75.39%–78.96%.Generally,the higher the injection pressure or rate,the greater the decrease in injectivity of the well caused by particle blockage.Pump lifting is an effective measure to remove the well blockage which can be used regularly.