This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP re...This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.展开更多
This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details...This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details, and porosity.Therefore, a detailed analysis is required to investigate the exact state of their hydraulic interactions and structuralresponses. In this regard, the performance results of several traditional armour units, including the Antifer cube,Tetrapod, X-block and natural stone, are considered for the first step of this study. Then, the related observed resultsare compared with those obtained for a newly designed (artificial coral) armour unit. The research methodology utilizesthe common wave flume test procedure. Furthermore, several verified numerical models in OpenFOAM code areused to gain the extra required data. The proposed armour is configured to provide an effective shore protection as anenvironmental-friendly coastal structure. Thus it is designed with a main trunk including deep grooves to imitate thetypical geometry of a coral type configuration, so as to attain desirable performance. The observed results and ananalytic hierarchy process (AHP) concept are used to compare the hydraulic performance of the studied traditionaland newly proposed (artificial coral) armour units. The results indicate that the artificial coral armour unit demonstratesacceptable performance. The widely used traditional armour units might be replaced by newer designs for betterwave energy dissipation, and more importantly, for fewer adverse effects on the marine environment.展开更多
Some refractory linings that protect metallic vessels from the hot temperature of the products they contain are made of masonries with or without mortar.The joints play an important role,reducing the stresses in the m...Some refractory linings that protect metallic vessels from the hot temperature of the products they contain are made of masonries with or without mortar.The joints play an important role,reducing the stresses in the masonries during heating.Furthermore,the presence of these joints makes the behaviour of the masonry nonlinear and orthotropic.To perform a thermomechanical simulation using a finite element method of an industrial vessel that contains hundreds or thousands of bricks and joints,microscopic models are not suitable due to the high computational time and the management of the behaviour of the joints(opening/closing)which affects the convergence.To overcome these problems,it is proposed to replace the masonry by a homogeneous material that has a behaviour equivalent to the set of bricks and joints,using a periodic homogenization technique.Since the joints can be closed or open,the equivalent material will have a different behaviour according to the joint state.Furthermore,refractory materials have an elastic-viscoplastic behaviour at high temperatures.So,the equivalent material will have an orthotropic elastic-viscoplastic behaviour,requiring a nonlinear homogenisation technique.An overview of this approach developed at University of Orléans is presented with two industrial applications(blast-furnace and steel ladle).展开更多
Recent earthquakes around the world have resulted in loss of human lives and high economic losses due to poor performance of unreinforced masonry constructions as well as poorly-built reinforced concrete framed buildi...Recent earthquakes around the world have resulted in loss of human lives and high economic losses due to poor performance of unreinforced masonry constructions as well as poorly-built reinforced concrete framed buildings. This has necessitated alternative building technologies with improved seismic performance. Confined masonry (CM) construction, has shown excellent behavior during past earthquakes across the world and requires similar skill at a marginally higher cost than that of unreinforced masonry. This paper summarizes the main features of generic construction and gains insight into the behavior of CM elements under earthquake excitations, representing a viable alternative for safe and economical construction in seismic areas.?The paper discusses various influential aspects like sequence of construction, properties and type of masonry material, structural configuration, reinforcement detailing in tie column/beam and masonry, panel aspect ratio, interface between concrete and masonry, axial stress, multiple confining column, opening in wall panels and damage pattern etc. along with solution to overcome the limitations.展开更多
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t...This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.展开更多
In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the deci...In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.展开更多
For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-st...For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost.展开更多
Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown wa...Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown walls under intermediate depths has been studied through physical model tests and numerical simulations.In this study,a three-dimensional numerical wave flume was developed to investigate monochromatic wave interactions in a rubble mound breakwater with a crown wall.Armor blocks were modeled in detail.The Navier-Stokes equations for two-phase incompressible flows,combined with shear stress transport k-ωturbulence model and volume of fluid method for tracking the free surface,were solved.A set of laboratory experiments were performed to validate the adopted model.Subsequently,a series of numerical simulations were implemented to examine the impacts of different hydrodynamic parameters(including wave height,incident wave period,and water depth)and the berm width on the wave force of the crown wall.Finally,a comparison of the experimental results and Martin method shows that the latter method is not suitable for this experimental scope.New empirical formulas are proposed to predict the wave force on crown walls under intermediate depth.The results can provide a basis for the design of crown wall of rubble mound breakwaters at intermediate depths.展开更多
Due to differences in the properties of composition materials and construction techniques,unreinforced masonry is characterized by low strength,anisotropy,nonuniformity,and low ductility.In order to accurately simulat...Due to differences in the properties of composition materials and construction techniques,unreinforced masonry is characterized by low strength,anisotropy,nonuniformity,and low ductility.In order to accurately simulate the mechanical behavior of unreinforced brick masonry walls under static and dynamic loads,a new elastoplastic damage constitutive model was proposed and the corresponding subroutine was developed based on the concrete material constitutive model.In the proposed constitutive model,the Rankine strength theory and the Drucker-Prager strength theory were used to define the tensile and compressive yield surface function of materials,respectively.Moreover,the stress updating algorithm was modified to consider the tensile plastic permanent deformation of masonry materials.To verify the accuracy of the proposed constitutive model,numerical simulations of the brick masonry under monotonic and cyclic uniaxial tension and compression loads were carried out.Comparisons among the numerical and theoretical and experimental results show that the proposed model can properly reflect the masonry material mechanical properties.Furthermore,the numerical models of four pieces of masonry walls with different mortar strengths were established.Low cyclic loadings were applied and the results show that the proposed constitutive model can properly simulate the wall shear failure characteristics,and the force-displacement hysteretic curves obtained by numerical simulation are in good agreement with the tests.Overall,the proposed elastic-plastic damage constitutive model can simulate the nonlinear behavior of unreinforced brick masonry walls very well,and can be used to predict the structural response of masonry walls.展开更多
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us...Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.展开更多
Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement metho...Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement methods,this method not only facilitates construction but also ensures lower reinforcement cost.To systematically explore the influence of joint reinforcement on the seismic performance of masonry walls,quasi-static tests were carried out on six specimens with different reinforcement forms.The test results show that the joint action of PP-band and CM can significantly improve the specimen′s brittle failure characteristics and enhance the integrity of the specimen after cracking.Compared with the specimen without reinforcement,each of the seismic performance indexes of the joint reinforced specimen had obvious improvement.The maximum increased rate about peak load and ductility of the joint reinforced specimen is 100.6%and 233.4%,respectively.展开更多
Air-tightness and energy consumption was measured in a one-family house built in 2009 and 2010.The air-tightness fulfilled the goals,which was set to 0.3 L/s·m^(2).The energy consumption was measured from the sta...Air-tightness and energy consumption was measured in a one-family house built in 2009 and 2010.The air-tightness fulfilled the goals,which was set to 0.3 L/s·m^(2).The energy consumption was measured from the start in May 2010.The figures in this report refer to measurements between May 2010 and October 2013 and are well below the authority demand of 55 kWh/m^(2)·year.展开更多
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme...The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.展开更多
This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructio...This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, indeed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settlement of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry structures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in a calculation software, processes the structure considering, not only the properties of constitutive material, non-homogeneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, starting from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the software.展开更多
基金Funded by the National Natural Science Foundation of China(No.52008046)Young Elite Scientists Sponsorship Program from JSAST(No.TJ-2023-024)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2848)。
文摘This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.
文摘This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details, and porosity.Therefore, a detailed analysis is required to investigate the exact state of their hydraulic interactions and structuralresponses. In this regard, the performance results of several traditional armour units, including the Antifer cube,Tetrapod, X-block and natural stone, are considered for the first step of this study. Then, the related observed resultsare compared with those obtained for a newly designed (artificial coral) armour unit. The research methodology utilizesthe common wave flume test procedure. Furthermore, several verified numerical models in OpenFOAM code areused to gain the extra required data. The proposed armour is configured to provide an effective shore protection as anenvironmental-friendly coastal structure. Thus it is designed with a main trunk including deep grooves to imitate thetypical geometry of a coral type configuration, so as to attain desirable performance. The observed results and ananalytic hierarchy process (AHP) concept are used to compare the hydraulic performance of the studied traditionaland newly proposed (artificial coral) armour units. The results indicate that the artificial coral armour unit demonstratesacceptable performance. The widely used traditional armour units might be replaced by newer designs for betterwave energy dissipation, and more importantly, for fewer adverse effects on the marine environment.
基金the PhD students(M.Ali,J.Brulin,M.Landreau,T.M.H Nguyen)who have participated to this study,the different compagnies(CPM,RHI-Magnesita,Saint-Gobain,and Tata Steel),the European Commission(ATHOR project,764987 Grant)the Federation for International Refractory Research and Education which have funded it.
文摘Some refractory linings that protect metallic vessels from the hot temperature of the products they contain are made of masonries with or without mortar.The joints play an important role,reducing the stresses in the masonries during heating.Furthermore,the presence of these joints makes the behaviour of the masonry nonlinear and orthotropic.To perform a thermomechanical simulation using a finite element method of an industrial vessel that contains hundreds or thousands of bricks and joints,microscopic models are not suitable due to the high computational time and the management of the behaviour of the joints(opening/closing)which affects the convergence.To overcome these problems,it is proposed to replace the masonry by a homogeneous material that has a behaviour equivalent to the set of bricks and joints,using a periodic homogenization technique.Since the joints can be closed or open,the equivalent material will have a different behaviour according to the joint state.Furthermore,refractory materials have an elastic-viscoplastic behaviour at high temperatures.So,the equivalent material will have an orthotropic elastic-viscoplastic behaviour,requiring a nonlinear homogenisation technique.An overview of this approach developed at University of Orléans is presented with two industrial applications(blast-furnace and steel ladle).
文摘Recent earthquakes around the world have resulted in loss of human lives and high economic losses due to poor performance of unreinforced masonry constructions as well as poorly-built reinforced concrete framed buildings. This has necessitated alternative building technologies with improved seismic performance. Confined masonry (CM) construction, has shown excellent behavior during past earthquakes across the world and requires similar skill at a marginally higher cost than that of unreinforced masonry. This paper summarizes the main features of generic construction and gains insight into the behavior of CM elements under earthquake excitations, representing a viable alternative for safe and economical construction in seismic areas.?The paper discusses various influential aspects like sequence of construction, properties and type of masonry material, structural configuration, reinforcement detailing in tie column/beam and masonry, panel aspect ratio, interface between concrete and masonry, axial stress, multiple confining column, opening in wall panels and damage pattern etc. along with solution to overcome the limitations.
文摘This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.
文摘In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.
文摘For years,non-structural masonry walls have received little attention by code developers and professional engineers.Recently,significant efforts have been made to shed more light on out-of-plane(OOP)behavior of non-structural masonry walls.In updated provisions of the Iranian seismic code,bed joint reinforcements(BJRs)and steel wallposts have been suggested for use.BJRs are horizontal reinforcements;steel wallposts are vertical truss-like elements intended to provide additional OOP restraints for a wall.The contribution of BJRs has previously been investigated by the authors.This study is devoted to investigating the contribution of steel wallposts to the OOP behavior of non-structural masonry walls.Using pre-validated 3D finite element(FE)models,the OOP behavior of 180 non-structural masonry walls with varying configurations and details are investigated.The OOP pressure-displacement curve,ultimate strength,the response modification factor,and the cracking pattern are among the results presented in this study.It is found that steel wallposts,especially those with higher rigidity,can improve the OOP strength of the walls.The contribution of wallposts in the case of shorter length walls and walls with an opening are more pronounced.Results also indicate that masonry walls with wallpost generally have smaller modification factors compared to similar walls without wallpost.
基金supported by the National Natural Science Foundation of China–Shandong Joint Fund(No.U1706226)the National Natural Science Foundation of China(No.52171284).
文摘Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown walls under intermediate depths has been studied through physical model tests and numerical simulations.In this study,a three-dimensional numerical wave flume was developed to investigate monochromatic wave interactions in a rubble mound breakwater with a crown wall.Armor blocks were modeled in detail.The Navier-Stokes equations for two-phase incompressible flows,combined with shear stress transport k-ωturbulence model and volume of fluid method for tracking the free surface,were solved.A set of laboratory experiments were performed to validate the adopted model.Subsequently,a series of numerical simulations were implemented to examine the impacts of different hydrodynamic parameters(including wave height,incident wave period,and water depth)and the berm width on the wave force of the crown wall.Finally,a comparison of the experimental results and Martin method shows that the latter method is not suitable for this experimental scope.New empirical formulas are proposed to predict the wave force on crown walls under intermediate depth.The results can provide a basis for the design of crown wall of rubble mound breakwaters at intermediate depths.
基金National Key Research and Development Program of China under Grant Nos.2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No.52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019EEEVL0402。
文摘Due to differences in the properties of composition materials and construction techniques,unreinforced masonry is characterized by low strength,anisotropy,nonuniformity,and low ductility.In order to accurately simulate the mechanical behavior of unreinforced brick masonry walls under static and dynamic loads,a new elastoplastic damage constitutive model was proposed and the corresponding subroutine was developed based on the concrete material constitutive model.In the proposed constitutive model,the Rankine strength theory and the Drucker-Prager strength theory were used to define the tensile and compressive yield surface function of materials,respectively.Moreover,the stress updating algorithm was modified to consider the tensile plastic permanent deformation of masonry materials.To verify the accuracy of the proposed constitutive model,numerical simulations of the brick masonry under monotonic and cyclic uniaxial tension and compression loads were carried out.Comparisons among the numerical and theoretical and experimental results show that the proposed model can properly reflect the masonry material mechanical properties.Furthermore,the numerical models of four pieces of masonry walls with different mortar strengths were established.Low cyclic loadings were applied and the results show that the proposed constitutive model can properly simulate the wall shear failure characteristics,and the force-displacement hysteretic curves obtained by numerical simulation are in good agreement with the tests.Overall,the proposed elastic-plastic damage constitutive model can simulate the nonlinear behavior of unreinforced brick masonry walls very well,and can be used to predict the structural response of masonry walls.
基金National Key Research and Development Program of China under Grant Nos. 2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No. 52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No. 19EEEVL0402
文摘Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.
基金National Natural Science Foundation of China under Grant Nos.51968047 and 51608249the Key Research and Development Program of Jiangxi Province under Grant No.20161BBG70058。
文摘Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement methods,this method not only facilitates construction but also ensures lower reinforcement cost.To systematically explore the influence of joint reinforcement on the seismic performance of masonry walls,quasi-static tests were carried out on six specimens with different reinforcement forms.The test results show that the joint action of PP-band and CM can significantly improve the specimen′s brittle failure characteristics and enhance the integrity of the specimen after cracking.Compared with the specimen without reinforcement,each of the seismic performance indexes of the joint reinforced specimen had obvious improvement.The maximum increased rate about peak load and ductility of the joint reinforced specimen is 100.6%and 233.4%,respectively.
文摘Air-tightness and energy consumption was measured in a one-family house built in 2009 and 2010.The air-tightness fulfilled the goals,which was set to 0.3 L/s·m^(2).The energy consumption was measured from the start in May 2010.The figures in this report refer to measurements between May 2010 and October 2013 and are well below the authority demand of 55 kWh/m^(2)·year.
基金National Natural Science Foundation of China(Grant Nos.51908188 and 51938011).
文摘The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.
文摘This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, indeed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settlement of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry structures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in a calculation software, processes the structure considering, not only the properties of constitutive material, non-homogeneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, starting from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the software.