期刊文献+
共找到167,976篇文章
< 1 2 250 >
每页显示 20 50 100
State Based Static and Dynamic Formal Analysis of UML State Diagrams
1
作者 Fahad Alhumaidan 《Journal of Software Engineering and Applications》 2012年第7期483-491,共9页
Design and specification is a serious issue in software engineering because of the semantics involved in transforming the real world problems to computer software systems. Unified Modeling Language (UML) has been acce... Design and specification is a serious issue in software engineering because of the semantics involved in transforming the real world problems to computer software systems. Unified Modeling Language (UML) has been accepted as a de facto standard for design and specification of object oriented systems. Unfortunately, UML structures lack defining semantics of a system. Formal methods are proved powerful, particularly, at requirement specification and design level. For a moment, formal methods are not welcomed because of much use of mathematics in formal languages. Therefore, a linkage between UML and formal methods is required to overcome the above deficiencies. In this paper, a new approach is developed by integrating UML and Z specification focusing on state diagram considering both the syntax and semantics. It is believed that this new approach will be effective and useful both at academics and industrial level. The resultant formal models of the approach are analyzed and validated using Z/Eves tool. 展开更多
关键词 UML state diagram FORMAL Methods Z Notation VALIDATION and VERIFICATION
下载PDF
Wigner Quasiprobability with an Application to Coherent Phase States
2
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2018年第6期564-614,共51页
Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical va... Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations. 展开更多
关键词 Parity Operator Quantum Square Well COHERENT stateS SU (1 1) Group and REALIZATIONS Glauber-Sudarshan and Husimi-Kano Quasiprobability London PHASE stateS PHASE Distribution Unorthodox Entire Function Laguerre 2D Polynomials Generalized Eulerian Numbers
下载PDF
Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
3
作者 Huifang Zhao Chaofan Sun +2 位作者 Xiaochun Liu Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期645-649,共5页
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh... We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds. 展开更多
关键词 time-dependent density functional theory(TDDFT) METHOD excited state intramolecular proton transfer(ESIPT) our own n-layered integrated MOLECULAR orbital and MOLECULAR mechanics(ONIOM) METHOD potential energy curves atomic dipole moment corrected Hirshfeld population(ADCH) charge
下载PDF
Equilibrium Interpretation of the Liquid Viscosity and Its Use for the Partial Expression of the Temperature Dependence of Melts Viscosity on State Diagrams
4
作者 V. P. Malyshev A. M. Makasheva 《材料科学与工程(中英文B版)》 2018年第3期91-99,共9页
关键词 BOLTZMANN
下载PDF
Oxidation Kinetics of Aluminum Powders in a Gas Fluidized Bed Reactor in the Potential Application of Surge Arresting Materials
5
作者 Hong Shih 《Materials Sciences and Applications》 2019年第3期253-292,共40页
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre... In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general. 展开更多
关键词 Aluminum Spherical Power GAS FLUIDIZATION Bed Oxidation Mechanism Oxide Growth Rate Gibbs Free Energy Ellingham diagram Mathematical Modeling Dynamic System Plasma DIFFUSION DIFFUSION Coefficient Crystallographic Defect Vacancy Pressure Temperature Flow Laplace Transform Equation Boundary Condition Ficks Second Law Software Experimental Theoretical SURGE ARRESTING MATERIALS Analytical Solution
下载PDF
Squeezed Coherent States in Non-Unitary Approach and Relation to Sub- and Super-Poissonian Statistics
6
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2017年第12期706-757,共52页
After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in gene... After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in general form. Then we consider the displacement of the squeezed vacuum states and calculate their photon statistics and their quasiprobabilities. The expectation values of the displaced states are related to the expectation values of the undisplaced states and are calculated for some simplest cases which are sufficient to discuss their categorization as sub-Poissonian and super-Poissonian statistics. A large set of these states do not belong to sub- or to super-Poissonian states but are also not Poissonian states. We illustrate in examples their photon distributions. This shows that the notions of sub- and of super-Poissonian statistics and their use for the definition of nonclassicality of states are problematic. In Appendix A we present the most important relations for SU (1,1) treatment of squeezing and the disentanglement of their operators. Some initial members of sequences of expectation values for squeezed vacuum states are collected in Appendix E. 展开更多
关键词 SU (1 1) Group of SQUEEZING and Rotation WIGNER Quasiprobability Unitary Approach to SQUEEZING NONCLASSICAL stateS Uncertainty Matrix Distance of stateS Jacobi Ultraspherical LEGENDRE and Hermite Polynomials Poisson STATISTICS
下载PDF
Dynamic NMR and Twisted Intramolecular Charge Transfer Excited States
7
作者 Iraj Parchamazad Debra Hornyak Melvin Miles 《American Journal of Analytical Chemistry》 2015年第5期402-410,共9页
In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom... In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60&deg;C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes. 展开更多
关键词 TWISTED Intramolecular Charge TRANSFER state Back Electron TRANSFER TWISTED Excited state Dynamic NMR Rotation around B-N Bond Molecular PHOTOCHEMISTRY inside NMR PROBE Customized Optical PROBE Solvent Effect Low Temperature Spectra
下载PDF
Eye on the Sky: A UAP Research and Field Study off New York’s Long Island Coast
8
作者 John Joseph Tedesco Gerald Thomas Tedesco 《Open Journal of Applied Sciences》 2024年第8期2267-2295,共29页
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a... A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors. 展开更多
关键词 Unidentified Anomalous Phenomenon (UAP) Forensic Techno-Signatures Office of the Director of National Intelligence (ODNI) Multispectral Electro-Optical (MEO) Ultraviolet A Radiation (UVA) Ultraviolet B Radiation (UVB) Ultraviolet C Radiation (UVC) Visible (VIS) Near-Infrared (NIR) Short-Wave Infrared (SWIR) Long-Wave Infrared (LWIR) Low-Frequency (LF) High-Frequency (HF) Radio-Frequency (RF) Alpha Beta Gamma Ultrasonic X-Band Active Radar Kinematics Aerodynamics Luminous Spheroids Robert Moses state Park (RMSP)
下载PDF
Structure Sorting of Multiple Macromolecular States in Heterogeneous Cryo-EM Samples by 3D Multivariate Statistical Analysis
9
作者 Bruno P. Klaholz 《Open Journal of Statistics》 2015年第7期820-836,共17页
Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conform... Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies. 展开更多
关键词 Heterogeneity Structural Biology Cryo Electron Microscopy Particle SORTING MULTIPLE states Macromolecular Complexes RESAMPLING Jackknifing BOOTSTRAPPING Multivariate Statistical Analysis 3D MSA 3D-SC RIBOSOME RNA Polymerase
下载PDF
Phase diagram and quench dynamics of a periodically drivenHaldane model
10
作者 Minxuan Ren Han Yang Mingyuan Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期317-325,共9页
We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find ... We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ (M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system. 展开更多
关键词 FLOQUET system Haldane MODEL QUENCH DYNAMICS topological phase diagram
下载PDF
Multitarget stool DNA for colorectal cancer screening:A review and commentary on the United States Preventive Services Draft Guidelines 被引量:3
11
作者 Barry M Berger Bernard Levin Robert J Hilsden 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2016年第5期450-458,共9页
Multitarget stool DNA(mt-sDNA) testing was approved for average risk colorectal cancer(CRC) screening by the United States Food and Drug Administration and thereafter reimbursed for use by the Medicare program(2014).T... Multitarget stool DNA(mt-sDNA) testing was approved for average risk colorectal cancer(CRC) screening by the United States Food and Drug Administration and thereafter reimbursed for use by the Medicare program(2014).The United States Preventive Services Task Force(USPSTF) October 2015 draft recommendation for CRC screening included mt-s DNA as an "alternative" screening test that "may be useful in select clinical circumstances",despite its very high sensitivity for early stage CRC.The evidence supporting mt-s DNA for routine screening use is robust.The clinical efficacy of mt-s DNA as measured by sensitivity,specificity,life-years gained(LYG),and CRC deaths averted is similar to or exceeds that of the other more specifically recommended screening options included in the draft document,especially those requiring annual testing adherence.In a population with primarily irregular screening participation,tests with the highest point sensitivity and reasonable specificity are more likely to favorably impact CRC related morbidity and mortality than those depending on annual adherence.This paper reviews the evidence supporting mt-s DNA for routine screening and demonstrates,using USPSTF's modeling data,that mt-s DNA at three-year intervals provides significant clinical net benefits and fewer complications per LYG than annual fecal immunochemical testing,high sensitivity guaiac based fecal occult blood testing and 10-year colonoscopy screening. 展开更多
关键词 Colorectal CANCER screening Multitarget STOOL DNA STOOL DNA The United states Preventive Services Task Force CANCER Intervention Surveillance MODELING Network FECAL immunological technique MODELING Interval
下载PDF
Origin of Magnetic Fields of Stellar Objects in the Universe Based on the 5D Projection Theory
12
作者 Peter C. W. Fung K. W. Wong 《Journal of Modern Physics》 2017年第4期668-746,共79页
Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D p... Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D &otimes;1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?&minus;?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6). 展开更多
关键词 5D Projection Theory Fermats Last Theorem Perelmans Mappings Self-Rotation Dipolar MAGNETIC FIELD of Stars LAWS of STELLAR Magnetism LAWS of STELLAR Angular Momentum MAGNETIC Bodes Law NON-EXISTENCE of Gravitational Singularity Semion state of Atoms in STELLAR Surface MAGNETIC Storm Planetary MAGNETIC FIELD Maxwell Equations at 4D-5D Boundary MAGNETIC Fields of the Trappist-1 System
下载PDF
Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state
13
作者 Yubo Wang Ling Zhang +6 位作者 Tianjie Lyu Lu Cui Shunying Zhao Xuechun Wang Meng Wang Yongjun Wang Zixiao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2229-2239,共11页
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec... Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke. 展开更多
关键词 DNA demethylation DNA methylation DNMT3A functional outcome hyperinflammatory state INTERLEUKIN NEUROINFLAMMATION STROKE TET2
下载PDF
Modulatory effect of International standard Scalp Acupuncture on brain activation in the elderly as revealed by resting-state fMRI 被引量:11
14
作者 Wai-Yeung Chung Song-Yan Liu +7 位作者 Jing-Chun Gao Yi-Jing Jiang Jing Zhang Shan-Shan Qu Ji-Ping Zhang Xiao-Long Tan Jun-Qi Chen Sheng-Xu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2126-2131,共6页
The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, an... The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers (three men and four women;50–70 years old) received International Standard Scalp Acupuncture at MS5 (the mid-sagittal line between Baihui (DU20) and Qianding (DU21)), the left MS6 (line joining Sishencong (EX-HN1) and Xuanli (GB6)), and the left MS7 (line joining DU20 and Qubin (GB7)). After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus (42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions. The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016 (approval No. 2016ks043). 展开更多
关键词 nerve REGENERATION RESTING-state FUNCTIONAL magnetic resonance imaging International Standard SCALP Acupuncture acupoint specificity brain FUNCTIONAL CONNECTIVITY healthy elderly volunteers low frequency fluctuation regional homogeneity FUNCTIONAL CONNECTIVITY neural REGENERATION
下载PDF
Absolute Internal Energy of the Real Gas 被引量:1
15
作者 Albrecht Elsner 《Engineering(科研)》 2017年第4期361-375,共15页
The internal energy U of the real, neutral-gas particles of total mass M in the volume V can have positive and negative values, whose regions are identified in the state chart of the gas. Depending on the relations am... The internal energy U of the real, neutral-gas particles of total mass M in the volume V can have positive and negative values, whose regions are identified in the state chart of the gas. Depending on the relations among gas temperature T, pressure p and mass-specific volume v=V/M, the mass exists as a uniform gas of freely-moving particles having positive values U or as more or less structured matter with negative values U. In the regions U>0?above the critical point [Tc , pc , vc] it holds that p(T,v)>pc and v>vc, and below the critical point it holds that p(T,v)c and v>vv , where vv is the mass-specific volume of saturated vapor. In the adjacent regions with negative internal energy values Uc is the line of equal positive and negative energy contributions and thus represents a line of vanishing internal energy ?U=0. At this level along the critical isochor the ever present microscopic fluctuations in energy and density become macroscopic fluctuations as the pressure decreases on approaching the critical point;these are to be observed in experiments on the critical opalescence. Crossing the isochor vc from U>0 to UΔU>0 happens without any discontinuity. The saturation line vv also separates the regions between U>0 and U , but does not represent a line U=0. The internal-energy values of saturated vapor Uv and condensate Ui can be determined absolutely as functions of vapor pressure p and densities (M/V)v and (M/V)i , repectively, yielding the results Uiv, U=Ui+Uvc and U=Ui=Uv=0 at the critical point. Crossing the line Vv from U=Uv>0 to U=Uv+UiΔU=-Ui>0 to be removed from the particle system. The thermodynamic and quantum-mechanical formulations of the internal energy of a particle system only agree if both the macroscopic and microscopic energy scales have the same absolute energy reference value 0. Arguments for the energy reference value in the state of transition from bound to freely- moving particles in macroscopic classical and microscopic quantum particle systems are discussed. 展开更多
关键词 ENERGY Reference Value Zero in Microscopic and Macroscopic Particle Systems state of Transition from Bound to Freely-Moving Particles INTERNAL ENERGY Regions in the state Chart of Gas CRITICAL Point and CRITICAL Isochor Loci of VANISHING INTERNAL ENERGY CRITICAL OPALESCENCE BEC Calculation of INTERNAL Energies of Saturated Liquid and Vapor
下载PDF
Preparation of entangledW states based on the cavity QED system
16
作者 Ke Li Jun-Long Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期290-296,共7页
We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where ... We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers. 展开更多
关键词 W state detuned interaction state FUSION CAVITY quantum ELECTRODYNAMICS
下载PDF
Entropy variances of pure coherent states in the diffusion channel
17
作者 Wei-Feng Wu Yong Fang Peng Fu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期384-388,共5页
Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep... Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states. 展开更多
关键词 ENTANGLED state representation diffusion CHANNEL coherent state ENTROPY evolution
下载PDF
Responses of Annual Variability of Vegetation NPP to Climate Variables Using Satellite Techniques in Gadarif State, Sudan
18
作者 Anwar Mohamedelhassan Bo Zhang +1 位作者 Abdelrahim E. Jahelnabi Eman M. Elhassan 《Journal of Geographic Information System》 2024年第2期136-147,共12页
Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into... Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area. 展开更多
关键词 Climate Variables MODIS NPP Climate Change Correlation Coefficient Gadarif state Remote Sensing GIS Applications
下载PDF
Alteration of functional connectivity in patients with Alzheimer’s disease revealed by resting-state functional magnetic resonance imaging 被引量:5
19
作者 Jie Zhao Yu-Hang Du +2 位作者 Xue-Tong Ding Xue-Hu Wang Guo-Zun Men 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期285-292,共8页
The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of function... The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database. 展开更多
关键词 Alzheimer's disease blood oxygen level-dependent signal correlation coefficient FUNCTIONAL connectivity pattern FUNCTIONAL magnetic resonance imaging gray MATTER RESTING state white MATTER
下载PDF
Predicting of Power Quality Steady State Index Based on Chaotic Theory Using Least Squares Support Vector Machine 被引量:2
20
作者 Aiqiang Pan Jian Zhou +2 位作者 Peng Zhang Shunfu Lin Jikai Tang 《Energy and Power Engineering》 2017年第4期713-724,共12页
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta... An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability. 展开更多
关键词 CHAOTIC THEORY Least SQUARES Support Vector Machine (LSSVM) Power Quality STEADY state Index Phase Space Reconstruction Particle SWARM Optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部