The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tu...The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.展开更多
BACKGROUND Intractable postherpetic neuralgia(PHN)can be difficult to manage even with aggressive multimodal therapies.Patients who experience uncontrolled refractory cranial PHN despite conservative treatment may ben...BACKGROUND Intractable postherpetic neuralgia(PHN)can be difficult to manage even with aggressive multimodal therapies.Patients who experience uncontrolled refractory cranial PHN despite conservative treatment may benefit from an intrathecal drug delivery system(IDDS).For craniofacial neuropathic pain,the traditional approach has been to place the intrathecal catheter tip below the level of the cranial nerve root entry zones,which may lead to insufficient analgesia.CASE SUMMARY We describe a 69-year-old man with a 1-year history of PHN after developing a vesicular rash in the ophthalmic division of cranial nerve V(trigeminal nerve)distribution.The pain was rated 7-8 at rest and 9-10 at breakthrough pain(BTP)on a numeric rating scale.Despite receiving aggressive multimodal therapies including large doses of oral analgesics(gabapentin 150 mg q12 h,oxycodone 5 mg/acetaminophen 325 mg q6 h,and lidocaine 5%patch 700 mg q12 h)and sphenopalatine ganglion block,there was no relief of pain.Subsequently,the patient elected to have an implantable IDDS with the catheter tip placed at the interpeduncular cistern.The frequency of BTP episodes decreased.The patient’s continuous daily dose was adjusted to 0.032 mg/d after 3 mo of follow-up and stopped 5 mo later.He did not report pain or other discomfort at outpatient follow-up 6 mo and 1 year after stopping intracisternal hydromorphone.CONCLUSION The use of interpeduncular cistern intrathecal infusion with low-dose hydromorphone by IDDS may be effective for severe craniofacial PHN.展开更多
Targeted delivery of therapeutics for spinal cord injury(SCI)has been a long-term challenge due to the complexity of the pathological procession.Macrophage,as an immune cell,can selectively accumulate at the trauma si...Targeted delivery of therapeutics for spinal cord injury(SCI)has been a long-term challenge due to the complexity of the pathological procession.Macrophage,as an immune cell,can selectively accumulate at the trauma site after SCI.This intrinsic targeting,coupled with good immune-escaping capacity makes macrophages an ideal source of biomimetic delivery carrier for SCI.Worth mentioning,macrophages have multiple polarization states,which may not be ignored when designing macrophage-based delivery systems.Herein,we fabricated macrophage membrane-camouflaged liposomes(RM-LIPs)and evaluated their abilities to extend drug circulation time and target the injured spinal cord.Specially,we detected the expression levels of the two main targeted receptors Mac-1 and integrinα4 in three macrophage subtypes,including unactivated(M0)macrophages,classically activated(M1)macrophages and alternatively activated(M2)macrophages,and compared targeting of these macrophage membrane-coated nanoparticles for SCI.The macrophage membrane camouflage decreased cellular uptake of liposomes in RAW264.7 immune cells and strengthened binding of the nanoparticle to the damaged endothelial cells in vitro.RM-LIPs can prolong drug circulation time and actively accumulate at the trauma site of the spinal cord in vivo.Besides,RM-LIPs loaded with minocycline(RM-LIP/MC)showed a comprehensive therapeutic effect on SCI mice,and the anti-pyroptosis was found to be a novel mechanism of RM-LIP/MC treatment of SCI.Moreover,the levels of Mac-1 and integrinα4 in macrophages and the targeting of RM-LIP for SCI were found to be independent of macrophage polarization states.Our study provided a biomimetic strategy via the biological properties of macrophages for SCI targeting and treatment.展开更多
Patients listed for organ transplant frequently have severe coronary artery disease(CAD), which may be treated with drug eluting stents(DES). Everolimus and zotarolimus eluting stents are commonly used. Newer generati...Patients listed for organ transplant frequently have severe coronary artery disease(CAD), which may be treated with drug eluting stents(DES). Everolimus and zotarolimus eluting stents are commonly used. Newer generation biolimus and novolimus eluting biodegradable stents are becoming increasingly popular. Patients undergoing transplant surgery soon after the placement of DES are at increased risk of stent thrombosis(ST) in the perioperative period. Dual antiplatelet therapy(DAPT) with aspirin and a P2Y12 inhibitor such as clopidogrel, prasugrel and ticagrelor is instated post stenting to decrease the incident of ST. Cangrelor has recently been approved by Food and Drug Administration and can be used as a bridging antiplatelet drug. The risk of ischemia vs bleeding must be considered when discontinuing or continuing DAPT for surgery. Though living donor transplant surgery is an elective procedure and can be optimally timed, cadaveric organ availability is unpredictable, therefore, discontinuation of antiplatelet medication cannot be optimally timed. The type of stent and timing of transplant surgery can be of utmost importance. Many platelet function point of care tests such as Light Transmittance Aggregrometry, Thromboelastography Platelet Mapping, VerifyN ow, Multiple Electrode Aggregrometry are used to assess bleeding risk and guide perioperative platelet transfusion. Response to allogenic platelet transfusion to control severe intraoperative bleeding may differ with the antiplatelet drug. In stent thrombosis is an emergency where management with either a drug eluting balloon or a DES has shown superior outcomes. Post-transplant complications often involved stenosis of an important vessel that may need revascularization. DES are now used for endovascular interventions for transplant orthotropic heart CAD, hepatic artery stenosis post liver transplantation, transplant renal artery stenosis following kidney transplantation, etc. Several antiproliferative drugs used in the DES are inhibitors of mammalian target of rapamycin. Thus they are used for post-transplant immunosuppression to prevent acute rejection in recipients with heart, liver, lung and kidney transplantation. This article describes in detail the various perioperative challenges encountered in organ transplantation surgery and patients with drug eluting stents.展开更多
In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been ...In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been one of the intriguing issues.Nanoparticle distribution and uniformity have emerged as substantial criteria in both medical and engineering applications.Adverse effects of chemotherapy on healthy tissues are known to be a significant concern during cancer therapy.A novel treatment method of magnetic drug targeting(MDT)has emerged as a promising topical cancer treatment along with some attractive advantages of improving efficacy,fewer side effects,and reduce drug dose.During magnetic drug targeting,the appropriate movement of nanoparticles(magnetic)as carriers is essential for the therapeutic process in the blood clot removal,infection treatment,and tumor cell treatment.In this study,we have numerically investigated the behavior of an unsteady blood flowinfused with magnetic nanoparticles during MDT under the influence of a uniform external magnetic field in a microtube.An optimal homotopy asymptotic method(OHAM)is employed to compute the governing equation for unsteady electromagnetohydrodynamics flow.The influence of Hartmann number(Ha),particle mass parameter(G),particle concentration parameter(R),and electro-osmotic parameter(k)is investigated on the velocity of magnetic nanoparticles and blood flow.Results obtained show that the electro-osmotic parameter,along with Hartmann’s number,dramatically affects the velocity of magnetic nanoparticles,blood flow velocity,and flow rate.Moreover,results also reveal that at a higher Hartman number,homogeneity in nanoparticles distribution improved considerably.The particle concentration andmass parameters effectively influence the capturing effect on nanoparticles in the blood flow using a micro-tube for magnetic drug targeting.Lastly,investigation also indicates that the OHAM analysis is efficient and quick to handle the system of nonlinear equations.展开更多
SARS-CoV-2 has triggered a public health outbreak across the world, resulting in almost 5 million deaths as of January 2022. The arrival of vaccines has provided temporary relief, but these vaccines target the spike p...SARS-CoV-2 has triggered a public health outbreak across the world, resulting in almost 5 million deaths as of January 2022. The arrival of vaccines has provided temporary relief, but these vaccines target the spike protein, which is highly prone to mutation, making it impossible to develop a long-term cure for the coronavirus. As such, there is an urgent need for site-specific inhibition of the virus in the respiratory tract, as well as targeting the internal proteins of the virus itself. Past literature has identified 3CLpro and PLpro as enzymes essential to the replication of the virus, as they assemble almost the entirety of the viral genome;as such, inhibiting the activity of these enzymes can stymie the spread of the virus. This project proposes the use of inhaled drug delivery to inhibit Covid-19 by synthesizing a formulation that can travel directly to the lungs via inhalation. In order to streamline synthesis, existing FDA-approved drugs were analyzed using computational docking software and in vitro assays for inhibitory activity against these two enzymes. High-performing drugs were then encapsulated in PLGA nanoparticles to synthesize a drug delivery system, which was tested and characterized in vitro. Furthermore, in an effort to improve this drug delivery system relative to other drug delivery systems, the use of enzyme nanomotors was explored as a way to increase the accuracy of delivery by using computational simulations that mimicked conditions in the human body to model the velocity and trajectory of the nanomotors.展开更多
In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of ...In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the adsorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of p Hdegradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed p H-degradable and enzyme-degradable capacity in in vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocompatible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDH in vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the properties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
Vascular endothelial growth factor receptor 2(VEGFR-2)and neuropilin-1(NRP-1)are two prominent antiangiogenic targets.They are highly expressed on vascular endothelial cells and some tumor cells.Therefore,targeting VE...Vascular endothelial growth factor receptor 2(VEGFR-2)and neuropilin-1(NRP-1)are two prominent antiangiogenic targets.They are highly expressed on vascular endothelial cells and some tumor cells.Therefore,targeting VEGFR-2 and NRP-1 may be a potential antiangiogenic and antitumor strategy.A7R,a peptide with sequence of Ala-Thr-Trp-Leu-Pro-Pro-Arg that was found by phage display of peptide libraries,can preferentially target VEGFR-2 and NRP-1 and destroy the binding between vascular endothelial growth factor 165(VEGF165)and VEGFR-2 or NRP-1.This peptide is a new potent inhibitor of tumor angiogenesis and a targeting ligand for cancer therapy.This review describes the discovery,function and mechanism of the action of A7R,and further introduces the applications of A7R in antitumor angiogenic treatments,tumor angiogenesis imaging and targeted drug delivery systems.In this review,strategies to deliver different drugs by A7R-modified liposomes and nanoparticles are highlighted.A7R,a new dual targeting ligand of VEGFR-2 and NRP-1,is expected to have efficient therapeutic or targeting roles in tumor drug delivery.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration,especially for the ...The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration,especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal,dynamic and static ocular barriers. Also,therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades,ocular drug delivery research acceleratedly advanced towards developing a novel,safe and patient compliant formulation and drug delivery devices/techniques,which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also,it includes development of conventional topical formulations such as suspensions,emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand,for posterior ocular delivery,research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreo-retinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topicaldrops. Also,these novel devices and/or formulations are easy to formulate,no/negligibly irritating,possess high precorneal residence time,sustain the drug release,and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also,recent developments with other ocular drug delivery strategies employing in situ gels,implants,contact lens and microneedles have been discussed.展开更多
In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantit...In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions^diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which mod- els the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection-diffusion system (which includes the developed model for brain tumor targeted drug delivery system).展开更多
The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of...The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of non-involved tissues to cytotoxic agents.Mesenchymal stromal cells(MSC)represent a group of undifferentiated multipotent cells presenting wide self-renewal features and the capacity to differentiate into an assortment of mesenchymal family cells.During the last year,they have been proposed as natural carriers for the selective release of antitumor drugs to malignant cll,s thus optimizing cytotoxic action on cancer cll,while significantly reducing adverse side efect on healthy cells.MSC chemotherapeutic drug loading and delivery is an encouraging new area of cell therapy for several tumors,especially for those with unsatisfactory prognosis and limited treatment options available.Although some experim ental models have been sucesfuly developed,phase I dinical studies are needed to confirm this potential application of cell therapy,in particular in the case of primary and secondary lung cancers.展开更多
In the field of biomedicine, stimuli-responsive drug delivery systems(DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result...In the field of biomedicine, stimuli-responsive drug delivery systems(DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result in both enhanced treatment outcome and reduced side effects. Reactive oxygen species(ROS) are the unavoidable consequence of cell oxidative metabolism. ROS play a crucial part in regulating biological and physiological processes,whereas excessive intracellular ROS usually lead to the oxidation stress which has implications in several typical diseases such as cancer, inflammation and atherosclerosis. Therefore,ROS-responsive DDSs have elicited widespread popularity for their promising applications in a series of biomedical research because the payload is only released in targeted cells or tissues that overproduce ROS. According to the design of ROS-responsive DDSs, the main release mechanisms of therapeutic agents can be ascribed to ROS-induced carrier solubility change, ROS-induced carrier cleavage or ROS-induced prodrug linker cleavage. This review summarized the latest development and novel design of ROS-responsive DDSs and discussed their design concepts and the applications in the biomedical field.展开更多
Alzheimer’s disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions.Alzheimer’s disease ...Alzheimer’s disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions.Alzheimer’s disease is associated with dementia and a progressive decline in memory,thinking,and social skills,eventually leading to a point that the individual can no longer perform daily activities independently.Currently available drugs on the market temporarily alleviate the symptoms,however,they are not successful in slowing down the progression of Alzheimer’s disease.Treatment and cures have been constricted due to the difficulty of drug delivery to the blood-brain barrier.Several studies have led to identification of vesicles to transport the necessary drugs through the blood-brain barrier that would typically not achieve the targeted area through systemic delivered medications.Recently,liposomes have emerged as a viable drug delivery agent to transport drugs that are not able to cross the blood-brain barrier.Liposomes are being used as a component of nanoparticle drug delivery;due to their biocompatible nature;and possessing the capability to carry both lipophilic and hydrophilic therapeutic agents across the blood brain barrier into the brain cells.Studies indicate the importance of liposomal based drug delivery in treatment of neurodegenerative disorders.The idea is to encapsulate the drugs inside the properly engineered liposome to generate a response of treatment.Liposomes are engineered to target specific diseased moieties and also several surface modifications of liposomes are under research to create a clinical path to the management of Alzheimer’s disease.This review deals with Alzheimer’s disease and emphasize on challenges associated with drug delivery to the brain,and how liposomal drug delivery can play an important role as a drug delivery method for the treatment of Alzheimer’s disease.This review also sheds some light on variation of liposomes.Additionally,it emphasizes on the liposomal formulations which are currently researched or used for treatment of Alzheimer’s disease and also discusses the future prospect of liposomal based drug delivery in Alzheimer’s disease.展开更多
Hybrid drug delivery systems(DDS) have been prepared by grafting poly(NIPAM-co-MPS) chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybr...Hybrid drug delivery systems(DDS) have been prepared by grafting poly(NIPAM-co-MPS) chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature(LCST) of the copolymer. The results have revealed that due to the presence of small diameter(~1.3 nm) micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.展开更多
Topical drug administration is acommonapproach to treat ocular disorders.However,the topical route of administration enables poor drug bioavailability.These drawbacks stem from limited permeability across the cornea,r...Topical drug administration is acommonapproach to treat ocular disorders.However,the topical route of administration enables poor drug bioavailability.These drawbacks stem from limited permeability across the cornea,rapid clearance of the instilled drop,and significant absorption into the conjunctival vasculature[1].Recently,contact lens based ophthalmic drug delivery systems have been proposed as alternative ophthalmic drug delivery systems to increase ocular drug bioavailability[2].Silk fibroin,a natural fiber polymer produced by the silk worm,Bombyx mori,has excellent properties for ocular drug delivery systems,i.e.,biocompatibility,chemical and mechanical stability,wetting ability,and high oxygen permeability[3].展开更多
Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment.In this work,a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid wa...Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment.In this work,a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid was developed.Carbon dots(CDs),from folic acid as the raw material,were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles(MSNs–NH2) via a microwave-assisted solvothermal reaction.The as-prepared nanohybrid(designated MSNs–CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs(e.g.,mesoporous structure,large specific surface area,and good biocompatibility),demonstrating a potential capability for fluorescence imagingguided drug delivery.More interestingly,the MSNs–CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells(e.g.,HeLa),indicating that folic acid still retained its function even after undergoing the solvothermal reaction.Benefited by these excellent properties,the fluorescent MSNs–CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted deliveryof anticancer drugs(e.g.,doxorubicin),thereby enhancing chemotherapeutic efficacy and reducing side effects.Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms,which is beneficial in the diagnosis and therapy of cancers in future.展开更多
Thermosensitive liposomes(TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-snglyce-ro-3-phosphocholine(DPPC) as the prima...Thermosensitive liposomes(TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-snglyce-ro-3-phosphocholine(DPPC) as the primary liposomal lipid, many studies have been done using this type of liposome from basic and practical aspects. While TSLs composed of DPPC enhance the cargo release near the phase transition temperature, it has been shown that many factors affect their temperature sensitivity. Thus numerous attempts have been undertaken to develop new TSLs for improving their thermal response performance. The main objective of this review is to introduce the development and recent update of innovative TSLs formulations, including combination of radiofrequency ablation(RFA), highintensity focused ultrasound(HIFU), magnetic resonance imaging(MRI) and alternating magnetic field(AMF). In addition, various factors affecting the design of TSLs, such as lipid composition, surfactant, size and serum components are also discussed.展开更多
Across the annals of time,organic molecules sourced from nature have found innumerable uses within the realms of healthcare,pharmaceuticals,and the study of living organisms.This abundant source of natural compounds h...Across the annals of time,organic molecules sourced from nature have found innumerable uses within the realms of healthcare,pharmaceuticals,and the study of living organisms.This abundant source of natural compounds has exhibited immense promise in the cure of diverse ailments,mainly neurodegenerative diseases owing to their minimum toxic and adverse effects.However,different challenges exist with phytocompounds from plants such as poor permeation,poor solubility(water/lipid),unsteadiness under extremely acidic pH conditions,and lack of targeting specificity.Furthermore,as a result of the existence of blood-brain barrier membrane and inconvenient pharmacokinetics characteristics of phytocompounds,their passage into the brain is constrained.In order to address this issue and augment the transportation of medications into the brain at a therapeutically effective level,it is imperative to formulate an innovative and pragmatic strategy.Many papers have shown that nanoformulations containing phytocompounds(resveratrol,quercetin,ferulic acid,curcumin,berberine,etc.)effectively improved many neurodegenerative diseases such as Parkinson’s,Alzheimer’s and Huntington’s diseases.This study provides an overview of phytocompounds that are used in nanosized lipid drug delivery systems.These systems are categorized according to lipid types and preparation techniques used in the formulation.Some studies regarding these systems and phytocompounds are also summarized.展开更多
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110071130011)the National Science and Technology Major Project (No. 2012ZX09304004)
文摘The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.
基金Supported by National Natural Science Foundation of China,No.81891004Tianjin Natural Science Foundation of China,No.21JCQNJC01140.
文摘BACKGROUND Intractable postherpetic neuralgia(PHN)can be difficult to manage even with aggressive multimodal therapies.Patients who experience uncontrolled refractory cranial PHN despite conservative treatment may benefit from an intrathecal drug delivery system(IDDS).For craniofacial neuropathic pain,the traditional approach has been to place the intrathecal catheter tip below the level of the cranial nerve root entry zones,which may lead to insufficient analgesia.CASE SUMMARY We describe a 69-year-old man with a 1-year history of PHN after developing a vesicular rash in the ophthalmic division of cranial nerve V(trigeminal nerve)distribution.The pain was rated 7-8 at rest and 9-10 at breakthrough pain(BTP)on a numeric rating scale.Despite receiving aggressive multimodal therapies including large doses of oral analgesics(gabapentin 150 mg q12 h,oxycodone 5 mg/acetaminophen 325 mg q6 h,and lidocaine 5%patch 700 mg q12 h)and sphenopalatine ganglion block,there was no relief of pain.Subsequently,the patient elected to have an implantable IDDS with the catheter tip placed at the interpeduncular cistern.The frequency of BTP episodes decreased.The patient’s continuous daily dose was adjusted to 0.032 mg/d after 3 mo of follow-up and stopped 5 mo later.He did not report pain or other discomfort at outpatient follow-up 6 mo and 1 year after stopping intracisternal hydromorphone.CONCLUSION The use of interpeduncular cistern intrathecal infusion with low-dose hydromorphone by IDDS may be effective for severe craniofacial PHN.
基金supported by the National Natural Science Foundation of China(No.81673376)the National Natural Science Foundation of Chongqing(cstc2015jcyj BX0100)the project for innovative Research Group at Higher Educational Institutions in Chongqing(CXQT20006)。
文摘Targeted delivery of therapeutics for spinal cord injury(SCI)has been a long-term challenge due to the complexity of the pathological procession.Macrophage,as an immune cell,can selectively accumulate at the trauma site after SCI.This intrinsic targeting,coupled with good immune-escaping capacity makes macrophages an ideal source of biomimetic delivery carrier for SCI.Worth mentioning,macrophages have multiple polarization states,which may not be ignored when designing macrophage-based delivery systems.Herein,we fabricated macrophage membrane-camouflaged liposomes(RM-LIPs)and evaluated their abilities to extend drug circulation time and target the injured spinal cord.Specially,we detected the expression levels of the two main targeted receptors Mac-1 and integrinα4 in three macrophage subtypes,including unactivated(M0)macrophages,classically activated(M1)macrophages and alternatively activated(M2)macrophages,and compared targeting of these macrophage membrane-coated nanoparticles for SCI.The macrophage membrane camouflage decreased cellular uptake of liposomes in RAW264.7 immune cells and strengthened binding of the nanoparticle to the damaged endothelial cells in vitro.RM-LIPs can prolong drug circulation time and actively accumulate at the trauma site of the spinal cord in vivo.Besides,RM-LIPs loaded with minocycline(RM-LIP/MC)showed a comprehensive therapeutic effect on SCI mice,and the anti-pyroptosis was found to be a novel mechanism of RM-LIP/MC treatment of SCI.Moreover,the levels of Mac-1 and integrinα4 in macrophages and the targeting of RM-LIP for SCI were found to be independent of macrophage polarization states.Our study provided a biomimetic strategy via the biological properties of macrophages for SCI targeting and treatment.
文摘Patients listed for organ transplant frequently have severe coronary artery disease(CAD), which may be treated with drug eluting stents(DES). Everolimus and zotarolimus eluting stents are commonly used. Newer generation biolimus and novolimus eluting biodegradable stents are becoming increasingly popular. Patients undergoing transplant surgery soon after the placement of DES are at increased risk of stent thrombosis(ST) in the perioperative period. Dual antiplatelet therapy(DAPT) with aspirin and a P2Y12 inhibitor such as clopidogrel, prasugrel and ticagrelor is instated post stenting to decrease the incident of ST. Cangrelor has recently been approved by Food and Drug Administration and can be used as a bridging antiplatelet drug. The risk of ischemia vs bleeding must be considered when discontinuing or continuing DAPT for surgery. Though living donor transplant surgery is an elective procedure and can be optimally timed, cadaveric organ availability is unpredictable, therefore, discontinuation of antiplatelet medication cannot be optimally timed. The type of stent and timing of transplant surgery can be of utmost importance. Many platelet function point of care tests such as Light Transmittance Aggregrometry, Thromboelastography Platelet Mapping, VerifyN ow, Multiple Electrode Aggregrometry are used to assess bleeding risk and guide perioperative platelet transfusion. Response to allogenic platelet transfusion to control severe intraoperative bleeding may differ with the antiplatelet drug. In stent thrombosis is an emergency where management with either a drug eluting balloon or a DES has shown superior outcomes. Post-transplant complications often involved stenosis of an important vessel that may need revascularization. DES are now used for endovascular interventions for transplant orthotropic heart CAD, hepatic artery stenosis post liver transplantation, transplant renal artery stenosis following kidney transplantation, etc. Several antiproliferative drugs used in the DES are inhibitors of mammalian target of rapamycin. Thus they are used for post-transplant immunosuppression to prevent acute rejection in recipients with heart, liver, lung and kidney transplantation. This article describes in detail the various perioperative challenges encountered in organ transplantation surgery and patients with drug eluting stents.
基金the research grant of Jeju National University in 2020,the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(Ministry of Science and ICT)(NRF-2018R1A4A1025998)Higher Education Commission of Pakistan(Project No.210-3800/NRPU/R&D/HEC/1530).
文摘In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been one of the intriguing issues.Nanoparticle distribution and uniformity have emerged as substantial criteria in both medical and engineering applications.Adverse effects of chemotherapy on healthy tissues are known to be a significant concern during cancer therapy.A novel treatment method of magnetic drug targeting(MDT)has emerged as a promising topical cancer treatment along with some attractive advantages of improving efficacy,fewer side effects,and reduce drug dose.During magnetic drug targeting,the appropriate movement of nanoparticles(magnetic)as carriers is essential for the therapeutic process in the blood clot removal,infection treatment,and tumor cell treatment.In this study,we have numerically investigated the behavior of an unsteady blood flowinfused with magnetic nanoparticles during MDT under the influence of a uniform external magnetic field in a microtube.An optimal homotopy asymptotic method(OHAM)is employed to compute the governing equation for unsteady electromagnetohydrodynamics flow.The influence of Hartmann number(Ha),particle mass parameter(G),particle concentration parameter(R),and electro-osmotic parameter(k)is investigated on the velocity of magnetic nanoparticles and blood flow.Results obtained show that the electro-osmotic parameter,along with Hartmann’s number,dramatically affects the velocity of magnetic nanoparticles,blood flow velocity,and flow rate.Moreover,results also reveal that at a higher Hartman number,homogeneity in nanoparticles distribution improved considerably.The particle concentration andmass parameters effectively influence the capturing effect on nanoparticles in the blood flow using a micro-tube for magnetic drug targeting.Lastly,investigation also indicates that the OHAM analysis is efficient and quick to handle the system of nonlinear equations.
文摘SARS-CoV-2 has triggered a public health outbreak across the world, resulting in almost 5 million deaths as of January 2022. The arrival of vaccines has provided temporary relief, but these vaccines target the spike protein, which is highly prone to mutation, making it impossible to develop a long-term cure for the coronavirus. As such, there is an urgent need for site-specific inhibition of the virus in the respiratory tract, as well as targeting the internal proteins of the virus itself. Past literature has identified 3CLpro and PLpro as enzymes essential to the replication of the virus, as they assemble almost the entirety of the viral genome;as such, inhibiting the activity of these enzymes can stymie the spread of the virus. This project proposes the use of inhaled drug delivery to inhibit Covid-19 by synthesizing a formulation that can travel directly to the lungs via inhalation. In order to streamline synthesis, existing FDA-approved drugs were analyzed using computational docking software and in vitro assays for inhibitory activity against these two enzymes. High-performing drugs were then encapsulated in PLGA nanoparticles to synthesize a drug delivery system, which was tested and characterized in vitro. Furthermore, in an effort to improve this drug delivery system relative to other drug delivery systems, the use of enzyme nanomotors was explored as a way to increase the accuracy of delivery by using computational simulations that mimicked conditions in the human body to model the velocity and trajectory of the nanomotors.
基金Supported by the National Natural Science Foundation of China(No.81371667,No.31271073)
文摘In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the adsorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of p Hdegradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed p H-degradable and enzyme-degradable capacity in in vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocompatible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDH in vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the properties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
基金funded by National Natural Science Foundation of China(No.81302686)Primary Research&Developement Plan of Shandong Province(No.2016GSF201083)
文摘Vascular endothelial growth factor receptor 2(VEGFR-2)and neuropilin-1(NRP-1)are two prominent antiangiogenic targets.They are highly expressed on vascular endothelial cells and some tumor cells.Therefore,targeting VEGFR-2 and NRP-1 may be a potential antiangiogenic and antitumor strategy.A7R,a peptide with sequence of Ala-Thr-Trp-Leu-Pro-Pro-Arg that was found by phage display of peptide libraries,can preferentially target VEGFR-2 and NRP-1 and destroy the binding between vascular endothelial growth factor 165(VEGF165)and VEGFR-2 or NRP-1.This peptide is a new potent inhibitor of tumor angiogenesis and a targeting ligand for cancer therapy.This review describes the discovery,function and mechanism of the action of A7R,and further introduces the applications of A7R in antitumor angiogenic treatments,tumor angiogenesis imaging and targeted drug delivery systems.In this review,strategies to deliver different drugs by A7R-modified liposomes and nanoparticles are highlighted.A7R,a new dual targeting ligand of VEGFR-2 and NRP-1,is expected to have efficient therapeutic or targeting roles in tumor drug delivery.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
文摘The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration,especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal,dynamic and static ocular barriers. Also,therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades,ocular drug delivery research acceleratedly advanced towards developing a novel,safe and patient compliant formulation and drug delivery devices/techniques,which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also,it includes development of conventional topical formulations such as suspensions,emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand,for posterior ocular delivery,research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreo-retinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topicaldrops. Also,these novel devices and/or formulations are easy to formulate,no/negligibly irritating,possess high precorneal residence time,sustain the drug release,and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also,recent developments with other ocular drug delivery strategies employing in situ gels,implants,contact lens and microneedles have been discussed.
文摘In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions^diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which mod- els the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection-diffusion system (which includes the developed model for brain tumor targeted drug delivery system).
文摘The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of non-involved tissues to cytotoxic agents.Mesenchymal stromal cells(MSC)represent a group of undifferentiated multipotent cells presenting wide self-renewal features and the capacity to differentiate into an assortment of mesenchymal family cells.During the last year,they have been proposed as natural carriers for the selective release of antitumor drugs to malignant cll,s thus optimizing cytotoxic action on cancer cll,while significantly reducing adverse side efect on healthy cells.MSC chemotherapeutic drug loading and delivery is an encouraging new area of cell therapy for several tumors,especially for those with unsatisfactory prognosis and limited treatment options available.Although some experim ental models have been sucesfuly developed,phase I dinical studies are needed to confirm this potential application of cell therapy,in particular in the case of primary and secondary lung cancers.
基金financially supported by Program for Liaoning Innovative Research Team in University (LT2014022)
文摘In the field of biomedicine, stimuli-responsive drug delivery systems(DDSs) have become increasingly popular due to their site-specific release ability in response to a certain physiological stimulus, which may result in both enhanced treatment outcome and reduced side effects. Reactive oxygen species(ROS) are the unavoidable consequence of cell oxidative metabolism. ROS play a crucial part in regulating biological and physiological processes,whereas excessive intracellular ROS usually lead to the oxidation stress which has implications in several typical diseases such as cancer, inflammation and atherosclerosis. Therefore,ROS-responsive DDSs have elicited widespread popularity for their promising applications in a series of biomedical research because the payload is only released in targeted cells or tissues that overproduce ROS. According to the design of ROS-responsive DDSs, the main release mechanisms of therapeutic agents can be ascribed to ROS-induced carrier solubility change, ROS-induced carrier cleavage or ROS-induced prodrug linker cleavage. This review summarized the latest development and novel design of ROS-responsive DDSs and discussed their design concepts and the applications in the biomedical field.
文摘Alzheimer’s disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions.Alzheimer’s disease is associated with dementia and a progressive decline in memory,thinking,and social skills,eventually leading to a point that the individual can no longer perform daily activities independently.Currently available drugs on the market temporarily alleviate the symptoms,however,they are not successful in slowing down the progression of Alzheimer’s disease.Treatment and cures have been constricted due to the difficulty of drug delivery to the blood-brain barrier.Several studies have led to identification of vesicles to transport the necessary drugs through the blood-brain barrier that would typically not achieve the targeted area through systemic delivered medications.Recently,liposomes have emerged as a viable drug delivery agent to transport drugs that are not able to cross the blood-brain barrier.Liposomes are being used as a component of nanoparticle drug delivery;due to their biocompatible nature;and possessing the capability to carry both lipophilic and hydrophilic therapeutic agents across the blood brain barrier into the brain cells.Studies indicate the importance of liposomal based drug delivery in treatment of neurodegenerative disorders.The idea is to encapsulate the drugs inside the properly engineered liposome to generate a response of treatment.Liposomes are engineered to target specific diseased moieties and also several surface modifications of liposomes are under research to create a clinical path to the management of Alzheimer’s disease.This review deals with Alzheimer’s disease and emphasize on challenges associated with drug delivery to the brain,and how liposomal drug delivery can play an important role as a drug delivery method for the treatment of Alzheimer’s disease.This review also sheds some light on variation of liposomes.Additionally,it emphasizes on the liposomal formulations which are currently researched or used for treatment of Alzheimer’s disease and also discusses the future prospect of liposomal based drug delivery in Alzheimer’s disease.
文摘Hybrid drug delivery systems(DDS) have been prepared by grafting poly(NIPAM-co-MPS) chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature(LCST) of the copolymer. The results have revealed that due to the presence of small diameter(~1.3 nm) micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.
文摘Topical drug administration is acommonapproach to treat ocular disorders.However,the topical route of administration enables poor drug bioavailability.These drawbacks stem from limited permeability across the cornea,rapid clearance of the instilled drop,and significant absorption into the conjunctival vasculature[1].Recently,contact lens based ophthalmic drug delivery systems have been proposed as alternative ophthalmic drug delivery systems to increase ocular drug bioavailability[2].Silk fibroin,a natural fiber polymer produced by the silk worm,Bombyx mori,has excellent properties for ocular drug delivery systems,i.e.,biocompatibility,chemical and mechanical stability,wetting ability,and high oxygen permeability[3].
基金the financial support from the National Natural Science Foundation of China(51872300 and U1832110)Ningbo Science and Technology Bureau(2016C50009)the W.C.Wong Education Foundation(rczx0800)
文摘Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment.In this work,a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid was developed.Carbon dots(CDs),from folic acid as the raw material,were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles(MSNs–NH2) via a microwave-assisted solvothermal reaction.The as-prepared nanohybrid(designated MSNs–CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs(e.g.,mesoporous structure,large specific surface area,and good biocompatibility),demonstrating a potential capability for fluorescence imagingguided drug delivery.More interestingly,the MSNs–CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells(e.g.,HeLa),indicating that folic acid still retained its function even after undergoing the solvothermal reaction.Benefited by these excellent properties,the fluorescent MSNs–CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted deliveryof anticancer drugs(e.g.,doxorubicin),thereby enhancing chemotherapeutic efficacy and reducing side effects.Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms,which is beneficial in the diagnosis and therapy of cancers in future.
基金National Natural Science Foundation of China (No.31671020) for financial support
文摘Thermosensitive liposomes(TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-snglyce-ro-3-phosphocholine(DPPC) as the primary liposomal lipid, many studies have been done using this type of liposome from basic and practical aspects. While TSLs composed of DPPC enhance the cargo release near the phase transition temperature, it has been shown that many factors affect their temperature sensitivity. Thus numerous attempts have been undertaken to develop new TSLs for improving their thermal response performance. The main objective of this review is to introduce the development and recent update of innovative TSLs formulations, including combination of radiofrequency ablation(RFA), highintensity focused ultrasound(HIFU), magnetic resonance imaging(MRI) and alternating magnetic field(AMF). In addition, various factors affecting the design of TSLs, such as lipid composition, surfactant, size and serum components are also discussed.
文摘Across the annals of time,organic molecules sourced from nature have found innumerable uses within the realms of healthcare,pharmaceuticals,and the study of living organisms.This abundant source of natural compounds has exhibited immense promise in the cure of diverse ailments,mainly neurodegenerative diseases owing to their minimum toxic and adverse effects.However,different challenges exist with phytocompounds from plants such as poor permeation,poor solubility(water/lipid),unsteadiness under extremely acidic pH conditions,and lack of targeting specificity.Furthermore,as a result of the existence of blood-brain barrier membrane and inconvenient pharmacokinetics characteristics of phytocompounds,their passage into the brain is constrained.In order to address this issue and augment the transportation of medications into the brain at a therapeutically effective level,it is imperative to formulate an innovative and pragmatic strategy.Many papers have shown that nanoformulations containing phytocompounds(resveratrol,quercetin,ferulic acid,curcumin,berberine,etc.)effectively improved many neurodegenerative diseases such as Parkinson’s,Alzheimer’s and Huntington’s diseases.This study provides an overview of phytocompounds that are used in nanosized lipid drug delivery systems.These systems are categorized according to lipid types and preparation techniques used in the formulation.Some studies regarding these systems and phytocompounds are also summarized.