The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annu...The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annular volutes are available, and there is no systematic design method for annular volutes. In this study, the influence of volute casing cross-sectional flow area on the hydraulic loss, pressure pulsations, and radial force under varying working conditions in a centrifugal ceramic pump are discussed in detail. Experimental tests were conducted to validate the numerical results. The results indicated that, when the volute casing flow area increases, the hydraulic performance decreases marginally under the rated working conditions, but increases at the o-design points, specifically under large flow condition. However, the volute casing with a larger flow area has a wider high-e ciency region. In addition, the increase in the volute casing flow area will decrease the pressure pulsations in the volute, regardless of the working condition, and decrease the radial force on the shaft, therefore, providing an improved pump operational stability. It is anticipated that this study will be of benefit during the design of annular volutes.展开更多
The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC sp...The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.展开更多
Nitrocellulose,or cellulose nitrate,has received considerable interest due to its various applications,such as propellants,coating agents and gas generators.However,its high mechanical sensitivity caused many accident...Nitrocellulose,or cellulose nitrate,has received considerable interest due to its various applications,such as propellants,coating agents and gas generators.However,its high mechanical sensitivity caused many accidents during its storage and usage in ammunition.In this work,two kinds of insensitive step ladderstructured nitrocellulose(LNC)with different nitrogen contents were synthesized.The products were characterized by FT-IR,Raman,XRD,SEM,elemental analysis,TGA,DSC,accelerating rate calorimeter analysis(ARC),and drop weight test to study their molecular structure,thermal characteristics and desensitization performance.Compared with raw nitrocellulose,LNC has a sharper exothermic peak in the DSC and ARC curves.The H50values of the two kinds of LNC increased from 25.76 to 30.01 cm for low nitrogen content and from 18.02 to 21.84 cm for high nitrogen content,respectively.The results show that the ladder-structure of LNC which provides regular molecular arrangement and a soft buffer made with polyethylene glycol could affect the energy releasing process of LNC and reduce the sensitivity of LNC.Insensitive LNC provides an alternative to be used as a binder in insensitive propellants formulation.展开更多
Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons...Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.展开更多
Previous studies have proposed higher requirements for the transient characteristics of a DC transformer used in a flexible high-voltage direct current(HVDC) system to achieve faster sampling speed and meet wider band...Previous studies have proposed higher requirements for the transient characteristics of a DC transformer used in a flexible high-voltage direct current(HVDC) system to achieve faster sampling speed and meet wider bandwidth requirements of the control and protection signal, and to eventually suppress the large transient fault current. In this study, a transient characteristics verification method is proposed for transient characteristics verification of a DC transformer used in a flexible HVDC system based on resampling technology and LabVIEW measurement technology after analyzing the key technology for transient characteristics verification of a DC transformer. A laboratory experiment for the transient characteristics of a full-fiber electronic DC transformer is conducted, and experimental results show that such verification method can be employed for frequency response and step response verification of a DC transformer at 10% of the rated voltage and current, and can eventually improve the screening of a DC transformer.展开更多
The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the chan...The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.展开更多
We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notabl...We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).展开更多
Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,an...Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,and hence affect its allergenic properties.However,few reports have focused on the influence of Chinese traditional starter fermentation on wheat allergy.In this study,5 starters from different regions of China were used for fermentation,and protein characteristics were monitored by sodium dodecyl sulfate polyacrylamide gel electropheresis,and immunoreactivity analyzed by immunoassay with allergenic serum was obtained from New Zealand white rabbits.The allergenicity of steamed and baked matrices was also evaluated.The results showed that the allergenicity of wheat dough was basically increased at the beginning and then decreased during fermentation,but specific trends depend on different starters.With the progress of fermentation,especially as pH value decreased to 3.0-4.0,the allergenicity decreased significantly.Baking and steaming can reduce the allergenicity of wheat matrix,but fermentation is not a key factor affecting the allergenic activity of proteins.Our results can provide a theoretical basis for controlling wheat allergenicity in food proces sing or producing hypoallergenic food.展开更多
This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures.Based on finite element method,the transient numerical calculat...This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures.Based on finite element method,the transient numerical calculation of the thermal characteristics of each component of the nozzle flowmeter has been conducted.The research shows that:as the fluid passes through the flowmeter,the high heat flux area inside the nozzle flowmeter gradually transfer from the center of the nozzle to the inlet and outlet,as well as the pressure tapping points upstream and downstream;High thermal stress zones are present near the upstream and downstream pressure tapping points and inlet and outlet area;High thermal deformation zones occur near the upstream and downstream pressure tapping points and eight slot nozzle.展开更多
This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under dif...This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.展开更多
Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements af...Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.展开更多
To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique o...To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.展开更多
During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clear...During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB.展开更多
Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet(UV) lasers are employed to dire...Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet(UV) lasers are employed to directly heat and sense the GaN epilayers in the transient thermoreflectance(TTR) measurement, obtaining important thermal transport properties in different GaN heterostructures, which include a diamond thin film heat spreader grown on GaN. The UV TTR technique enables rapid and non-contact thermal characterization for GaN wafers.展开更多
In this paper,through data collection and field investigation,the development and utilization status of shallow geothermal energy in Zhoukou urban area was discussed.Based on the analysis of hydrogeological conditions...In this paper,through data collection and field investigation,the development and utilization status of shallow geothermal energy in Zhoukou urban area was discussed.Based on the analysis of hydrogeological conditions,rock and soil structure characteristics and field test research,the spatial distribution characteristics of rock and soil in the study area were summarized.The study shows that Zhoukou City is located in the alluvial plain of Huanghuai,and the loose deposits of river alluvial genesis range 0-200 m.These loose deposits and groundwater stored in their pores are the main carriers of shallow geothermal energy.In the central part of the Yinghe River in the middle of the study area,the aquifer thickness is within 200 m,the particle size is coarser,the water-bearing degree and recharge capacity is better.On this basis,the paper uses AHP to evaluate the suitability of shallow geothermal energy development and utilization to guide the rational development and utilization of shallow geothermal energy resources.展开更多
Thermal conductivity is an important material parameter of silicon when studying the performance and reliability of devices or for guiding circuit design when considering heat dissipation, especially when the self-hea...Thermal conductivity is an important material parameter of silicon when studying the performance and reliability of devices or for guiding circuit design when considering heat dissipation, especially when the self-heating effect becomes prominent in ultra-scaled MOSFETs.The cross-plane thermal conductivity of a thin silicon film is lacking due to the difficulty in sensing high thermal conductivity in the vertical direction.In this paper, a feasible method that utilizes an ultra-fast electrical pulse within 20 μs combined with the hot strip technique is adopted.To the best of our knowledge, this is the first work that shows how to extract the cross-plane thermal conductivity of sub-50 nm(30 nm, 17 nm, and 10 nm)silicon films on buried oxide.The ratio of the extracted cross-plane thermal conductivity of the silicon films over the bulk value is only about 6.9%, 4.3%, and 3.8% at 300 K, respectively.As the thickness of the films is smaller than the phonon mean free path, the classical heat transport theory fails to predict the heat dissipation in nanoscale transistors.Thus, in this study, a ballistic model, derived from the heat transport equation based on extended-irreversible-hydrodynamics(EIT), is used for further investigation, and the simulation results exhibit good consistence with the experimental data.The extracted effective thermal data could provide a good reference for precise device simulations and thermoelectric applications.展开更多
The sensitivity of the interferometric fiber optic gyro in the presence of time varying thermal gradients plays a key role in its performance. It is well known that this sensitivity is due to the difference of index c...The sensitivity of the interferometric fiber optic gyro in the presence of time varying thermal gradients plays a key role in its performance. It is well known that this sensitivity is due to the difference of index changes between the points symmetrical with respect to the middle of the coil. In order to reduce this sensitivity, different winding patterns, such as quadrupolar winding, were introduced to keep the thermal environment of the symmetrical points. In this paper, a numerical model of the transient temperature distribution in the gyro was established. The temperature gradient of the coil was solved in conjugation with the nature convection heat transfer in the aperture between the coil and the case. Effects of the winding pattern and the design of its case were investigated to optimize the design of the interferometric fiber optic gyro.展开更多
Detailed analysis on transient characteristics of ECL circuits are performed in this paper, then a relatively exact propagation delay expression applied for all temperatures is presented. The cryogenic characteristics...Detailed analysis on transient characteristics of ECL circuits are performed in this paper, then a relatively exact propagation delay expression applied for all temperatures is presented. The cryogenic characteristics of some dominant parameters contributed to propagation delay are also discussed. The model achieved is suitable for optimum designs of high speed devices and circuits at all temperatures.展开更多
Methane hydrate is considered as a potential energy source in the future due to its abundant reserves and high energy density.To investigate the influence of initial hydrate saturation,production pressure,and the temp...Methane hydrate is considered as a potential energy source in the future due to its abundant reserves and high energy density.To investigate the influence of initial hydrate saturation,production pressure,and the temperature of thermal stimulation on gas production rate and cumulative gas production percentage,we conducted the methane hydrate dissociation experiments using depressurization,thermal stimulation and a combination of two methods in this study.It is found that when the gas production pressures are the same,the higher the hydrate initial saturation,the greater change in hydrate reservoir temperature.Therefore,it is easier to appear the phenomenon of icing and hydrate reformation when the hydrate saturation is higher.For example,the reservoir temperature dropped to below zero in depressurization process when the hydrate saturation was about 37%.However,the same phenomenon didn’t appear as the saturation was about 12%.This may be due to more free gas in the reservoir with hydrate saturated of 37%.We also find that the temperature variation of reservoir can be reduced effectively by combination of depressurization and thermal stimulation method.And the average gas production rate is highest with combined method in the experiments.When the pressure of gas production is 2 MPa,compared with depressurization,the average of gas production can increase 54%when the combined method is used.The efficiency of gas production is very low when thermal stimulation was used alone.When the temperature of thermal stimulation is 11℃,the average rate of gas production in the experiment of thermal stimulation is less than 1/3 of that in the experiment of the combined method.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51779107)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20170548)+1 种基金Postdoctoral Science Foundation of China(Grant No.2017M611724)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annular volutes are available, and there is no systematic design method for annular volutes. In this study, the influence of volute casing cross-sectional flow area on the hydraulic loss, pressure pulsations, and radial force under varying working conditions in a centrifugal ceramic pump are discussed in detail. Experimental tests were conducted to validate the numerical results. The results indicated that, when the volute casing flow area increases, the hydraulic performance decreases marginally under the rated working conditions, but increases at the o-design points, specifically under large flow condition. However, the volute casing with a larger flow area has a wider high-e ciency region. In addition, the increase in the volute casing flow area will decrease the pressure pulsations in the volute, regardless of the working condition, and decrease the radial force on the shaft, therefore, providing an improved pump operational stability. It is anticipated that this study will be of benefit during the design of annular volutes.
文摘The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.
基金supported in part by the National Natural Science Foundation of China(No.22075146)。
文摘Nitrocellulose,or cellulose nitrate,has received considerable interest due to its various applications,such as propellants,coating agents and gas generators.However,its high mechanical sensitivity caused many accidents during its storage and usage in ammunition.In this work,two kinds of insensitive step ladderstructured nitrocellulose(LNC)with different nitrogen contents were synthesized.The products were characterized by FT-IR,Raman,XRD,SEM,elemental analysis,TGA,DSC,accelerating rate calorimeter analysis(ARC),and drop weight test to study their molecular structure,thermal characteristics and desensitization performance.Compared with raw nitrocellulose,LNC has a sharper exothermic peak in the DSC and ARC curves.The H50values of the two kinds of LNC increased from 25.76 to 30.01 cm for low nitrogen content and from 18.02 to 21.84 cm for high nitrogen content,respectively.The results show that the ladder-structure of LNC which provides regular molecular arrangement and a soft buffer made with polyethylene glycol could affect the energy releasing process of LNC and reduce the sensitivity of LNC.Insensitive LNC provides an alternative to be used as a binder in insensitive propellants formulation.
基金Project supported by the National Basic Research Program(No.2015CB351901)the National Natural Science Foundation of China(Nos.11372272,11622221,11621062,11502009,and 11772030)+2 种基金the Doctoral New Investigator Grant from American Chemical Society Petroleum Research Fund of the National Science Foundation(Nos.1509763 and 1554499)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University(No.SV2018-KF-13)the Fundamental Research Funds for the Central Universities(No.2017XZZX002-11)
文摘Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.
基金supported by the State Grid Corporation Science and Technology Project(No.JL71-15-039)
文摘Previous studies have proposed higher requirements for the transient characteristics of a DC transformer used in a flexible high-voltage direct current(HVDC) system to achieve faster sampling speed and meet wider bandwidth requirements of the control and protection signal, and to eventually suppress the large transient fault current. In this study, a transient characteristics verification method is proposed for transient characteristics verification of a DC transformer used in a flexible HVDC system based on resampling technology and LabVIEW measurement technology after analyzing the key technology for transient characteristics verification of a DC transformer. A laboratory experiment for the transient characteristics of a full-fiber electronic DC transformer is conducted, and experimental results show that such verification method can be employed for frequency response and step response verification of a DC transformer at 10% of the rated voltage and current, and can eventually improve the screening of a DC transformer.
基金supported by the National Key Research and Development Plan(Grant No.2022YFC2905700)Natural Science Foundation of Anhui Province(Grant No.2208085ME120)Key Research and Development Plan of Anhui Province(Grant No.2022m07020001).
文摘The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.
基金supported by the Natural Science Foundation of Shandong Province for Major Basic Research under Grant No.ZR2023ZD09the National Natural Science Foundation of China under Grant Nos.12174327,11974302,and 92270104.
文摘We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).
基金supported by the National Natural Science Foundation of China(31872904)。
文摘Wheat allergy has become a serious health threat worldwide and its prevalence has increased alarmingly in the past few years.Factors such as food matrix and food processing may alter the structure of wheat proteins,and hence affect its allergenic properties.However,few reports have focused on the influence of Chinese traditional starter fermentation on wheat allergy.In this study,5 starters from different regions of China were used for fermentation,and protein characteristics were monitored by sodium dodecyl sulfate polyacrylamide gel electropheresis,and immunoreactivity analyzed by immunoassay with allergenic serum was obtained from New Zealand white rabbits.The allergenicity of steamed and baked matrices was also evaluated.The results showed that the allergenicity of wheat dough was basically increased at the beginning and then decreased during fermentation,but specific trends depend on different starters.With the progress of fermentation,especially as pH value decreased to 3.0-4.0,the allergenicity decreased significantly.Baking and steaming can reduce the allergenicity of wheat matrix,but fermentation is not a key factor affecting the allergenic activity of proteins.Our results can provide a theoretical basis for controlling wheat allergenicity in food proces sing or producing hypoallergenic food.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang (Grant No.2022C03170)Science and Technology Project of Quzhou (Grant No.2022K98)Science and Technology Project of Zhejiang (Grant No.LGC21E050001).
文摘This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures.Based on finite element method,the transient numerical calculation of the thermal characteristics of each component of the nozzle flowmeter has been conducted.The research shows that:as the fluid passes through the flowmeter,the high heat flux area inside the nozzle flowmeter gradually transfer from the center of the nozzle to the inlet and outlet,as well as the pressure tapping points upstream and downstream;High thermal stress zones are present near the upstream and downstream pressure tapping points and inlet and outlet area;High thermal deformation zones occur near the upstream and downstream pressure tapping points and eight slot nozzle.
基金This work is supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800).
文摘This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle.
基金the financial support of the State Key Laboratory of Engine Reliability(skler-202105)。
文摘Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.
文摘To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.
基金Supported by the National Natural Science Foundation of China(No.52075468)。
文摘During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61604049)the Shenzhen Municipal Research Project(Grant No.JCYJ20160531192714636)
文摘Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet(UV) lasers are employed to directly heat and sense the GaN epilayers in the transient thermoreflectance(TTR) measurement, obtaining important thermal transport properties in different GaN heterostructures, which include a diamond thin film heat spreader grown on GaN. The UV TTR technique enables rapid and non-contact thermal characterization for GaN wafers.
基金supported by Henan Provincial Two-Right-Priced project of mine geological environment restoration (No.[2011]130-7)
文摘In this paper,through data collection and field investigation,the development and utilization status of shallow geothermal energy in Zhoukou urban area was discussed.Based on the analysis of hydrogeological conditions,rock and soil structure characteristics and field test research,the spatial distribution characteristics of rock and soil in the study area were summarized.The study shows that Zhoukou City is located in the alluvial plain of Huanghuai,and the loose deposits of river alluvial genesis range 0-200 m.These loose deposits and groundwater stored in their pores are the main carriers of shallow geothermal energy.In the central part of the Yinghe River in the middle of the study area,the aquifer thickness is within 200 m,the particle size is coarser,the water-bearing degree and recharge capacity is better.On this basis,the paper uses AHP to evaluate the suitability of shallow geothermal energy development and utilization to guide the rational development and utilization of shallow geothermal energy resources.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ19F040001)the National Natural Science Foundation of China(Grant No.61473287)the NSFC–Zhejiang Joint Fund for the Integration of Industrialization Informatization,China(Grant No.U1609213)
文摘Thermal conductivity is an important material parameter of silicon when studying the performance and reliability of devices or for guiding circuit design when considering heat dissipation, especially when the self-heating effect becomes prominent in ultra-scaled MOSFETs.The cross-plane thermal conductivity of a thin silicon film is lacking due to the difficulty in sensing high thermal conductivity in the vertical direction.In this paper, a feasible method that utilizes an ultra-fast electrical pulse within 20 μs combined with the hot strip technique is adopted.To the best of our knowledge, this is the first work that shows how to extract the cross-plane thermal conductivity of sub-50 nm(30 nm, 17 nm, and 10 nm)silicon films on buried oxide.The ratio of the extracted cross-plane thermal conductivity of the silicon films over the bulk value is only about 6.9%, 4.3%, and 3.8% at 300 K, respectively.As the thickness of the films is smaller than the phonon mean free path, the classical heat transport theory fails to predict the heat dissipation in nanoscale transistors.Thus, in this study, a ballistic model, derived from the heat transport equation based on extended-irreversible-hydrodynamics(EIT), is used for further investigation, and the simulation results exhibit good consistence with the experimental data.The extracted effective thermal data could provide a good reference for precise device simulations and thermoelectric applications.
文摘The sensitivity of the interferometric fiber optic gyro in the presence of time varying thermal gradients plays a key role in its performance. It is well known that this sensitivity is due to the difference of index changes between the points symmetrical with respect to the middle of the coil. In order to reduce this sensitivity, different winding patterns, such as quadrupolar winding, were introduced to keep the thermal environment of the symmetrical points. In this paper, a numerical model of the transient temperature distribution in the gyro was established. The temperature gradient of the coil was solved in conjugation with the nature convection heat transfer in the aperture between the coil and the case. Effects of the winding pattern and the design of its case were investigated to optimize the design of the interferometric fiber optic gyro.
文摘Detailed analysis on transient characteristics of ECL circuits are performed in this paper, then a relatively exact propagation delay expression applied for all temperatures is presented. The cryogenic characteristics of some dominant parameters contributed to propagation delay are also discussed. The model achieved is suitable for optimum designs of high speed devices and circuits at all temperatures.
基金Supported by the National Natural Science Foundation of China(51436003,51822603,51576025)the National Key Research and Development Program of China(2017YFC0307303,2016YFC0304001)+1 种基金the Fok Ying Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161050)the Fundamental Research Funds for the Central Universities of China(DUT18ZD403)
文摘Methane hydrate is considered as a potential energy source in the future due to its abundant reserves and high energy density.To investigate the influence of initial hydrate saturation,production pressure,and the temperature of thermal stimulation on gas production rate and cumulative gas production percentage,we conducted the methane hydrate dissociation experiments using depressurization,thermal stimulation and a combination of two methods in this study.It is found that when the gas production pressures are the same,the higher the hydrate initial saturation,the greater change in hydrate reservoir temperature.Therefore,it is easier to appear the phenomenon of icing and hydrate reformation when the hydrate saturation is higher.For example,the reservoir temperature dropped to below zero in depressurization process when the hydrate saturation was about 37%.However,the same phenomenon didn’t appear as the saturation was about 12%.This may be due to more free gas in the reservoir with hydrate saturated of 37%.We also find that the temperature variation of reservoir can be reduced effectively by combination of depressurization and thermal stimulation method.And the average gas production rate is highest with combined method in the experiments.When the pressure of gas production is 2 MPa,compared with depressurization,the average of gas production can increase 54%when the combined method is used.The efficiency of gas production is very low when thermal stimulation was used alone.When the temperature of thermal stimulation is 11℃,the average rate of gas production in the experiment of thermal stimulation is less than 1/3 of that in the experiment of the combined method.