According to the actual measurement data, probability models of horizontal wind load were obtained based on wind velocity statistic and power spectral density function of fluctuating wind velocity through stochastic s...According to the actual measurement data, probability models of horizontal wind load were obtained based on wind velocity statistic and power spectral density function of fluctuating wind velocity through stochastic sampling and using spectrum analysis method. Through the comparison of two models, probability models of horizontal wind load based on probability models of fluctuating wind velocity were obtained by revising the mean and variance of fluctuating wind velocity. Results show that the variance takes lower value when the power spectral density function of fluctuating wind velocity is used to obtain the probability model of horizontal wind load. The quadratic term of fluctuating wind velocity takes a small contribution value in total wind load with almost no contribution to the model of horizontal wind load. It is convenient for practical engineering to obtain the models of horizontal wind load by using probability models of fluctuating wind velocity.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU...Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing ...The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.展开更多
According to the relationship between load and response, the equivalent static wind load(ESWL) of a structure can be estimated by load-response correlation(LRC) method, which can be accurately used to estimate the bac...According to the relationship between load and response, the equivalent static wind load(ESWL) of a structure can be estimated by load-response correlation(LRC) method, which can be accurately used to estimate the background ESWL of a structure. The derivation of the classical expression of LRC formula is based on a specific command response at a critical position, and the ESWL distribution has only one form in this case. In this paper, a general expression of LRC formula is derived based on a specific command response at all positions. For the general expression, ESWLs can be expressed by load-response correlation coefficients, response-response correlation coefficients, RMS values of the fluctuating wind loads, and peak factor in the form of matrices. By comparing the expressions of LRC method, it was found that the classical expression was only one form of the general one. The general expression which introduces the response-response correlation coefficients provided more options for structural engineers to estimate ESWLs and offered further insights into the LRC method. Finally, a cable-stayed bridge, a rigid three span continuous girder bridge, and a suspension bridge were used to verify the correctness of the general expression of LRC method.展开更多
The present paper investigates the collapse process of a pipe-framed greenhouse under static wind loading based on a non-linear finite element analysis.The purpose is to establish a more reasonable wind resistant desi...The present paper investigates the collapse process of a pipe-framed greenhouse under static wind loading based on a non-linear finite element analysis.The purpose is to establish a more reasonable wind resistant design method for such structures.The structures are so flexible that the fluid-structure interaction(FSI)is considered in the analysis.In practice,iterative analyses of the structure’s response and the wind pressure distribution on the deformed structure are made.The wind direction is normal to the ridge.Computational fluid dynamics(CFD)analysis with a RANS turbulence model is used for evaluating the time-averaged wind pressure coefficient distribution on the structure.Both the geometric and the material non-linearity are considered in the structural analysis.The collapse behavior obtained is consistent with the practical one often observed in damage investigations.Based on the results,discussion is made of the validity of the current design guideline commonly used in Japan.The same analysis is carried out for various reinforced models.The effect of each reinforcement method on the improvement of wind resistance of the structure is investigated on the basis of the allowable stress and deformation limits specified in the current design guideline.展开更多
A discussion is made of the wind force coefficients for designing the main wind force resisting systems of H.P. (Hyperbolic-Paraboid)-shaped porous canopy roofs on the basis of a wind tunnel experiment. Roof models ...A discussion is made of the wind force coefficients for designing the main wind force resisting systems of H.P. (Hyperbolic-Paraboid)-shaped porous canopy roofs on the basis of a wind tunnel experiment. Roof models with a number of small circular holes were made of nylon resin using laser lithography. The porosity was changed from 0 (solid) to 0.4. Besides the porosity, the geometric parameters of the models were the rise to span ratio and slope of the roof. The overall aerodynamic forces and moments acting on a model were measured by a six-component force balance in a turbulent boundary layer. The results indicate that the porosity significantly reduces the wind loads. The design wind force coefficients for porous canopy roofs can be provided by those for solid roofs with the same configuration multiplied by a reduction factor. The proposed wind force coefficients are verified by a comparison of the load effect predicted by the proposed wind force coefficients with the maximum load effect obtained from dynamic analyses using the time history of wind force and moment coefficients. The axial forces induced in the columns supporting the roof are regarded as the load effect for discussing the design wind loads.展开更多
Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by st...Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved.展开更多
To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients o...To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients of the train and the bridge were measured in a series of train-bridge system segment models through wind tunnel tests when two trains passed each other on the bridge and when a train entered and left the wind barrier section of the bridge.Based on the improved SIMPACK and ANSYS rigid-flexible coupling simulation method,a wind-double train-track-bridge system coupled vibration model was established.The dynamic responses of the train were analyzed under the effects of sudden change in wind loads caused by two trains passing each other and a train entering and leaving the wind barrier section of the bridge.The results show that the effects of sudden wind load change caused by the trains passing each other had less effects on the running safety of the leeward-side train than the wind shielding effect caused by the windward-side train in the wind speed range of 10−25 m/s.With the decrease in the porosity of wind barriers,the effects of the sudden wind load change played an increasingly important role in the running safety and comfort of the train.With the increase in wind speed,the lateral response of the train increased obviously because of the effects of sudden wind load change,which affects both the lateral running stability and the comfort of the train.展开更多
The cylindrical reticulated shell structures without side walls, which are normally arranged in pairs, are usually used as dry-coal sheds in a thermal power plant. The wind loads of these shells do not exist in standa...The cylindrical reticulated shell structures without side walls, which are normally arranged in pairs, are usually used as dry-coal sheds in a thermal power plant. The wind loads of these shells do not exist in standards or codes. Therefore, this study investigates the mean and fluctuating wind loads on a cylindrical reticulated shell with a rise-to-span ratio of 0.39 through a series of wind tunnel tests. The characteristics of the wind pressures on the upper and lower surfaces and the net pressures are presented. The results show that the wind direction and another shell structure significantly affect the wind loads on the principal shell. The most unfavorable wind direction is around 30~, whereas the effects of the wind field and the height of the coal stack are small. The surfaces of the shells are divided into nine blocks, and the block mean and fluctuating (rms) pressure coefficients suitable for engineering applications are given as references for wind load codes.展开更多
Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing ...Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>展开更多
Ocean platforms are subjected to a variety of environment loads, such as those from winds, waves, currents, etc. In this study, the torsion problems of a gravity platform column with cracks under wind load were invest...Ocean platforms are subjected to a variety of environment loads, such as those from winds, waves, currents, etc. In this study, the torsion problems of a gravity platform column with cracks under wind load were investigated. The colmnn was assumed to be a composite cylinder. Therefore the torsion fracture problem of a composite cylinder was considered, and new boundary integral equations for the Saint-Venant torsion problem of a composite cylinder with curvilinear cracks were derived. The problem was re- duced to solving the boundary integral equations on every boundary. By using the new boundary element method, the torsion prob- lem of the gravity platform colunm with a straight crack under various wind loads was calculated. The obtained results were com- pared with those obtained for a torsion problem of the same column without cracks to prove the applicability of the present method. The comparison showed that the detrimental effect of cracks in a column should be considered in marine engineering.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea...Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.展开更多
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef...High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.展开更多
A concrete gravity base structure may not be suitable for offshore weak soil because of its heavy weight. Therefore, a conceptual model for a concrete offshore wind turbine structure suitable for weak soils is propose...A concrete gravity base structure may not be suitable for offshore weak soil because of its heavy weight. Therefore, a conceptual model for a concrete offshore wind turbine structure suitable for weak soils is proposed. The proposed model is composed of a prestressed concrete(PSC) supported by a pile foundation. For a three-dimensional analysis of the large concrete structure, wave pressures based on the diffraction wave theory are developed using a three-dimensional solid finite element method. Static and dynamic analyses were performed to achieve the conceptual model of a PSC structure subjected to ocean environmental loads and a 5-MW turbine load on southwest coast in Korea. From the analysis, the maximum displacement and stresses of the proposed model did not exceed the allowable values from design standard, and the first mode of natural frequency of the structure was in a safe range to avoid resonance. The proposed model has enough structural stability to withstand external loads, and it is expected to be used in locations suitable for concrete gravity structures.展开更多
This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was use...This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.展开更多
This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The curre...This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.展开更多
Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study propos...Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.展开更多
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t...The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).展开更多
文摘According to the actual measurement data, probability models of horizontal wind load were obtained based on wind velocity statistic and power spectral density function of fluctuating wind velocity through stochastic sampling and using spectrum analysis method. Through the comparison of two models, probability models of horizontal wind load based on probability models of fluctuating wind velocity were obtained by revising the mean and variance of fluctuating wind velocity. Results show that the variance takes lower value when the power spectral density function of fluctuating wind velocity is used to obtain the probability model of horizontal wind load. The quadratic term of fluctuating wind velocity takes a small contribution value in total wind load with almost no contribution to the model of horizontal wind load. It is convenient for practical engineering to obtain the models of horizontal wind load by using probability models of fluctuating wind velocity.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
基金Science and Technology Fund of NWPU Under Grant No. M450211Seed Fund of NWPU Under Grant No. Z200534
文摘The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51508107)the China Postdoctoral Science Foundation(Grant No.2016M590592)the Natural Science Foundation of Fujian Province(Grant No.2015J05098)。
文摘According to the relationship between load and response, the equivalent static wind load(ESWL) of a structure can be estimated by load-response correlation(LRC) method, which can be accurately used to estimate the background ESWL of a structure. The derivation of the classical expression of LRC formula is based on a specific command response at a critical position, and the ESWL distribution has only one form in this case. In this paper, a general expression of LRC formula is derived based on a specific command response at all positions. For the general expression, ESWLs can be expressed by load-response correlation coefficients, response-response correlation coefficients, RMS values of the fluctuating wind loads, and peak factor in the form of matrices. By comparing the expressions of LRC method, it was found that the classical expression was only one form of the general one. The general expression which introduces the response-response correlation coefficients provided more options for structural engineers to estimate ESWLs and offered further insights into the LRC method. Finally, a cable-stayed bridge, a rigid three span continuous girder bridge, and a suspension bridge were used to verify the correctness of the general expression of LRC method.
基金supported by the Steel Structure Research and Education Promotion Project of the Japan Iron and Steel Federation in FY2016.
文摘The present paper investigates the collapse process of a pipe-framed greenhouse under static wind loading based on a non-linear finite element analysis.The purpose is to establish a more reasonable wind resistant design method for such structures.The structures are so flexible that the fluid-structure interaction(FSI)is considered in the analysis.In practice,iterative analyses of the structure’s response and the wind pressure distribution on the deformed structure are made.The wind direction is normal to the ridge.Computational fluid dynamics(CFD)analysis with a RANS turbulence model is used for evaluating the time-averaged wind pressure coefficient distribution on the structure.Both the geometric and the material non-linearity are considered in the structural analysis.The collapse behavior obtained is consistent with the practical one often observed in damage investigations.Based on the results,discussion is made of the validity of the current design guideline commonly used in Japan.The same analysis is carried out for various reinforced models.The effect of each reinforcement method on the improvement of wind resistance of the structure is investigated on the basis of the allowable stress and deformation limits specified in the current design guideline.
文摘A discussion is made of the wind force coefficients for designing the main wind force resisting systems of H.P. (Hyperbolic-Paraboid)-shaped porous canopy roofs on the basis of a wind tunnel experiment. Roof models with a number of small circular holes were made of nylon resin using laser lithography. The porosity was changed from 0 (solid) to 0.4. Besides the porosity, the geometric parameters of the models were the rise to span ratio and slope of the roof. The overall aerodynamic forces and moments acting on a model were measured by a six-component force balance in a turbulent boundary layer. The results indicate that the porosity significantly reduces the wind loads. The design wind force coefficients for porous canopy roofs can be provided by those for solid roofs with the same configuration multiplied by a reduction factor. The proposed wind force coefficients are verified by a comparison of the load effect predicted by the proposed wind force coefficients with the maximum load effect obtained from dynamic analyses using the time history of wind force and moment coefficients. The axial forces induced in the columns supporting the roof are regarded as the load effect for discussing the design wind loads.
基金Ministry of Science and Technology of China Under Grant No.SLDRCE10-B-04the National Natural Science Foundation Under Grant No.50621062
文摘Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved.
基金Projects(51822803,51878080,51778073) supported by the National Natural Science Foundation of ChinaProjects(2020JJ3035,2018JJ3538) supported by the Hunan Provincial Natural Science Foundation of China。
文摘To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients of the train and the bridge were measured in a series of train-bridge system segment models through wind tunnel tests when two trains passed each other on the bridge and when a train entered and left the wind barrier section of the bridge.Based on the improved SIMPACK and ANSYS rigid-flexible coupling simulation method,a wind-double train-track-bridge system coupled vibration model was established.The dynamic responses of the train were analyzed under the effects of sudden change in wind loads caused by two trains passing each other and a train entering and leaving the wind barrier section of the bridge.The results show that the effects of sudden wind load change caused by the trains passing each other had less effects on the running safety of the leeward-side train than the wind shielding effect caused by the windward-side train in the wind speed range of 10−25 m/s.With the decrease in the porosity of wind barriers,the effects of the sudden wind load change played an increasingly important role in the running safety and comfort of the train.With the increase in wind speed,the lateral response of the train increased obviously because of the effects of sudden wind load change,which affects both the lateral running stability and the comfort of the train.
基金Project supported by the Ministry of Science and Technology of China (Nos. SLDRCE09-B-06 and SLDRCE08-A-03)the National Natural Science Foundation of China (Nos. 51178352, 51278368 and 90715040)
文摘The cylindrical reticulated shell structures without side walls, which are normally arranged in pairs, are usually used as dry-coal sheds in a thermal power plant. The wind loads of these shells do not exist in standards or codes. Therefore, this study investigates the mean and fluctuating wind loads on a cylindrical reticulated shell with a rise-to-span ratio of 0.39 through a series of wind tunnel tests. The characteristics of the wind pressures on the upper and lower surfaces and the net pressures are presented. The results show that the wind direction and another shell structure significantly affect the wind loads on the principal shell. The most unfavorable wind direction is around 30~, whereas the effects of the wind field and the height of the coal stack are small. The surfaces of the shells are divided into nine blocks, and the block mean and fluctuating (rms) pressure coefficients suitable for engineering applications are given as references for wind load codes.
文摘Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>
基金supported by the National High-Technology Research and Development Program of China (No.2007AA09Z317)
文摘Ocean platforms are subjected to a variety of environment loads, such as those from winds, waves, currents, etc. In this study, the torsion problems of a gravity platform column with cracks under wind load were investigated. The colmnn was assumed to be a composite cylinder. Therefore the torsion fracture problem of a composite cylinder was considered, and new boundary integral equations for the Saint-Venant torsion problem of a composite cylinder with curvilinear cracks were derived. The problem was re- duced to solving the boundary integral equations on every boundary. By using the new boundary element method, the torsion prob- lem of the gravity platform colunm with a straight crack under various wind loads was calculated. The obtained results were com- pared with those obtained for a torsion problem of the same column without cracks to prove the applicability of the present method. The comparison showed that the detrimental effect of cracks in a column should be considered in marine engineering.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry ( No. 2008-353-332-190 )National Science Foundation( No. 51008233)
文摘Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.
文摘High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and Ministry of Trade,Industry & Energy(MOTIE) of the Republic of Korea(No.20153030023830)
文摘A concrete gravity base structure may not be suitable for offshore weak soil because of its heavy weight. Therefore, a conceptual model for a concrete offshore wind turbine structure suitable for weak soils is proposed. The proposed model is composed of a prestressed concrete(PSC) supported by a pile foundation. For a three-dimensional analysis of the large concrete structure, wave pressures based on the diffraction wave theory are developed using a three-dimensional solid finite element method. Static and dynamic analyses were performed to achieve the conceptual model of a PSC structure subjected to ocean environmental loads and a 5-MW turbine load on southwest coast in Korea. From the analysis, the maximum displacement and stresses of the proposed model did not exceed the allowable values from design standard, and the first mode of natural frequency of the structure was in a safe range to avoid resonance. The proposed model has enough structural stability to withstand external loads, and it is expected to be used in locations suitable for concrete gravity structures.
文摘This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.
文摘This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.
基金University of Malaya Research under Grant No.RP013B-15SUS,Postgraduate Research Fund(PG098-2015A)
文摘Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).