The research was carried out in Dar es Salaam’s Makongo and Goba neighbourhoods using an exploratory method covering 200 questionnaires,100 for Goba and 100 for Makongo respectively.There were two significant issues ...The research was carried out in Dar es Salaam’s Makongo and Goba neighbourhoods using an exploratory method covering 200 questionnaires,100 for Goba and 100 for Makongo respectively.There were two significant issues observed:To begin,data from 2003 to 2017 reveal a large increase in urbanisation in both locations.Furthermore,urbanisation led to an increase in hard surface areas,which,according to the analysis,contributed to an increase in surface runoff,which had detrimental consequences for hilly residential settlements,resulting in downstream floods,building destruction,and loss of life and properties.Few residents were aware of water harvesting methods as a technique to deal with surface runoff,but they were not aware that they might be used to harvest water for future use.Policy to harvest,retain and use rainwater is recommended,whereby each plot owner should contain water from his/her plot by harvesting,collecting and retaining it for home use such as farming,fish ponds and other uses.展开更多
The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the ...The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the hilly terrain.In this approach,a new three-dimensional model of hilly terrain is established to analyze its viscous effect,and a wind shear is modelled through logarithmic function.They are coupled into the aerodynamics of wind turbine based on“FLUENT”software.Then we apply the proposed method to the NREL Phase VI wind turbines and compare with an experiment in the atmospheric boundary layer(ABL)wind tunnel to validate its accuracy.The simulation also investigates the power outputs of wind turbines on the flat ground and the continuous hilly terrain by changing the location of the wind turbine related to the hilly terrain and the shape of the 1st hill.The results show that the wind turbine located on the top of the 2nd hill has the maximum power;and that when the wind turbine is located on the downstream of the hill,the stall zone should be avoided,and the power of the wind turbine located on the side of the hill is higher than that of the wind turbine located on the front and rear of the hilly terrain.展开更多
In this study,short-term gully retreat was monitored from the active gullies selected in representative black soil area,using differential global positioning system(GPS).With the support of geographic information syst...In this study,short-term gully retreat was monitored from the active gullies selected in representative black soil area,using differential global positioning system(GPS).With the support of geographic information system(GIS),multi-temporal digital elevation models(DEM) were constructed from the data collected by GPS and used for further analysis.Based on the analysis of multi-temporal DEM,we discussed the erosion-deposition characteristics within gully and a developing model for black soil gully area of Northeast China was proposed.The results are:(1) The analysis of the monitored gully data in 2004 indicated that the retreat of gully head reached more than 10 m,gully area extended 170-400 m2,net gully eroded volume 220-320 m3,and gully erosion modulus 2200-4800 t?km?2?a?1.(2) Compared with the mature gully the initial gully grows rapidly,and its erosion parameters are relatively large.The erosion parameters have not only to do with flow energy,but also with the growth phase.(3) There are significant seasonal differences in gully erosion parameters.The extension of gully area and width dominates in winter and spring without marked net erosion while changes mainly occur in gully head and net erosion in rainy season.(4) It is remarkable for freeze-thaw erosion in the black soil area of NE China.The gully wall of SG2 extended 0.45 m under freeze-thaw effect in 2004,and the distance of gully head retreated maximally 6.4 m.(5) Due to freeze-thaw action and snowmelt,gully is primarily in the interior adjustment process in winter and early spring.There are much more depositions compared with that during rainy season,which can almost happen throughout the gully,while erosion mostly occurs near head,esp.for gullies having a relatively long history of development.On the other hand,the process of energy exchange with exterior dominates in rainy season.It is considered that this cyclic process is an important mechanism for gully growth in high latitude or/and high attitude regions.展开更多
文摘The research was carried out in Dar es Salaam’s Makongo and Goba neighbourhoods using an exploratory method covering 200 questionnaires,100 for Goba and 100 for Makongo respectively.There were two significant issues observed:To begin,data from 2003 to 2017 reveal a large increase in urbanisation in both locations.Furthermore,urbanisation led to an increase in hard surface areas,which,according to the analysis,contributed to an increase in surface runoff,which had detrimental consequences for hilly residential settlements,resulting in downstream floods,building destruction,and loss of life and properties.Few residents were aware of water harvesting methods as a technique to deal with surface runoff,but they were not aware that they might be used to harvest water for future use.Policy to harvest,retain and use rainwater is recommended,whereby each plot owner should contain water from his/her plot by harvesting,collecting and retaining it for home use such as farming,fish ponds and other uses.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20161537)National Science Key Laboratory Foundation(No.6142220180202)+1 种基金Rotor Aerodynamics Key Laboratory Foundation (No.RAL20180303-1)National Natural Science Foundation of China(No.11502105).
文摘The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the hilly terrain.In this approach,a new three-dimensional model of hilly terrain is established to analyze its viscous effect,and a wind shear is modelled through logarithmic function.They are coupled into the aerodynamics of wind turbine based on“FLUENT”software.Then we apply the proposed method to the NREL Phase VI wind turbines and compare with an experiment in the atmospheric boundary layer(ABL)wind tunnel to validate its accuracy.The simulation also investigates the power outputs of wind turbines on the flat ground and the continuous hilly terrain by changing the location of the wind turbine related to the hilly terrain and the shape of the 1st hill.The results show that the wind turbine located on the top of the 2nd hill has the maximum power;and that when the wind turbine is located on the downstream of the hill,the stall zone should be avoided,and the power of the wind turbine located on the side of the hill is higher than that of the wind turbine located on the front and rear of the hilly terrain.
基金Key Project for National Natural Science Foundation of China,No.40235056The Ph.D. Programs Foundation of Ministry of Education of China, No.20030027015+3 种基金China Postdoctoral Science Foundation,No.20070410482Doctoral Foundation of University of Jinan,No.B0620National Natural Science Foundation of China,No.40672158Key Subject Foundation Supported by Shandong Province
文摘In this study,short-term gully retreat was monitored from the active gullies selected in representative black soil area,using differential global positioning system(GPS).With the support of geographic information system(GIS),multi-temporal digital elevation models(DEM) were constructed from the data collected by GPS and used for further analysis.Based on the analysis of multi-temporal DEM,we discussed the erosion-deposition characteristics within gully and a developing model for black soil gully area of Northeast China was proposed.The results are:(1) The analysis of the monitored gully data in 2004 indicated that the retreat of gully head reached more than 10 m,gully area extended 170-400 m2,net gully eroded volume 220-320 m3,and gully erosion modulus 2200-4800 t?km?2?a?1.(2) Compared with the mature gully the initial gully grows rapidly,and its erosion parameters are relatively large.The erosion parameters have not only to do with flow energy,but also with the growth phase.(3) There are significant seasonal differences in gully erosion parameters.The extension of gully area and width dominates in winter and spring without marked net erosion while changes mainly occur in gully head and net erosion in rainy season.(4) It is remarkable for freeze-thaw erosion in the black soil area of NE China.The gully wall of SG2 extended 0.45 m under freeze-thaw effect in 2004,and the distance of gully head retreated maximally 6.4 m.(5) Due to freeze-thaw action and snowmelt,gully is primarily in the interior adjustment process in winter and early spring.There are much more depositions compared with that during rainy season,which can almost happen throughout the gully,while erosion mostly occurs near head,esp.for gullies having a relatively long history of development.On the other hand,the process of energy exchange with exterior dominates in rainy season.It is considered that this cyclic process is an important mechanism for gully growth in high latitude or/and high attitude regions.