期刊文献+
共找到7,451篇文章
< 1 2 250 >
每页显示 20 50 100
Genetic expression of Col-2A and Col-10A as a function of administration of IGF-1 &TGF-<i>β</i>with and without anterior mandibular repositioning appliance on the growth of mandibular condylar cartilage in young rabbit 被引量:1
1
作者 A. S. Patil R. B. Sable +1 位作者 R. M. Kothari P. Nagarajan 《Open Journal of Stomatology》 2013年第9期6-13,共8页
New Zealand (NZ) young rabbits with the administration of insulin-like growth factor (IGF-1) and transforming growth factor-β (TGF-β) with and without mandibular anterior repositioning appliances are explored for th... New Zealand (NZ) young rabbits with the administration of insulin-like growth factor (IGF-1) and transforming growth factor-β (TGF-β) with and without mandibular anterior repositioning appliances are explored for the growth of the mandibular condylar cartilage (MCC). 32 growing NZ and rabbits were divided into 4 groups: the group with saline injection in TMJ, the group which received growth factor injection in TMJ, the group which received anterior positioning appliance and the group which received growth factors injection as well as mandibular repositioning appliance. Gene expression was studied by real-time RT-PCR and cartilage growth by histomorphometry. Administration of growth factors along with mandibular repositioning appliances has induced 1) 1.70-fold expression of Col-2Agene (p value < 0.0005) and 2) 1.47-fold expression of Col-10Agene (p value < 0.0005). In contrast, administration of only mandibular repositioning appliances induced 1) 1.28-fold expression of Col-2Agene (p value < 0.0005) and 2) merely 0.62-fold expression of Col-10Agene (p value < 0.0005), while administration of growth factors only induced 1) mere 0.56-fold expression of Col-2Agene (p value 10A gene (p value growth factors along with mandibular repositioning appliances causes an increase in genetic expressions which have been corroborated by histomorphometry and validated by statistical analysis, during an accelerated growth of mandibular condylar cartilage. Administration of growth factors in the TMJ could provide a synergistic role along with mandibular repositioning appliances for treatment of mandibular retrognathism as well as disorders on the MCC. 展开更多
关键词 Transforming GROWTH Factor-β (TGF-β) Insulin-Like GROWTH FACTOR (IGF-1) Condylar cartilage GROWTH MANDIBULAR REPOSITIONING Appliances Col-2A Col-10A
下载PDF
Elevated levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and vascular endothelial growth factor in patients with knee articular cartilage injury 被引量:8
2
作者 Zhen-Wei Wang Le Chen +5 位作者 Xiao-Rui Hao Zhen-An Qu Shi-Bo Huang Xiao-Jun Ma Jian-Chuan Wang Wei-Ming Wang 《World Journal of Clinical Cases》 SCIE 2019年第11期1262-1269,共8页
BACKGROUND Inflammatory cytokines play a vital role in the occurrence of osteoarticular injury and inflammation. Whether inflammation-associated factors interleukin-1β(IL- 1β), IL-6, tumor necrosis factor-α(TNF-α)... BACKGROUND Inflammatory cytokines play a vital role in the occurrence of osteoarticular injury and inflammation. Whether inflammation-associated factors interleukin-1β(IL- 1β), IL-6, tumor necrosis factor-α(TNF-α) and vascular endothelial growth factor (VEGF) are involved in the pathogenesis of keen articular cartilage injury remains poorly understood. AIM To measure the levels of inflammatory factors [IL-1β, IL-6, TNF-α and VEGF] in patients with knee articular cartilage injury. METHODS Fifty-five patients with knee articular cartilage injury were selected as patient groups, who were divided into three grades [mild (n = 20), moderate (n = 19) and severe (n = 16)] according to disease severity and X-ray examinations. Meanwhile, 30 healthy individuals who underwent physical examination were selected as the control group. The levels of IL-1β, IL-6, TNF-α and VEGF were measured by ELISA and immunohistochemical staining. RESULTS Compared with the control group, patient groups displayed significantly higher levels of IL-1β, IL-6, TNF-α and VEGF, and the extent of increase was directly proportional to the severity of injury (P < 0.05). In addition, the number of cells with positive staining of IL-1β, IL-6, TNF-α and VEGF in the synovial membrane were significantly increased, along with increased disease severity (P < 0.05). After treatment, the scores of visual analogue scale and the Western Ontario and McMaster University of Orthopaedic Index in patient groups were 2.26 ± 1.13 and 15.56 ± 7.12 points, respectively, which were significantly lower than those before treatment (6.98 ± 1.32 and 49.48 ± 8.96). Correlation analysis suggested that IL-1β and TNF-α were positively correlated with VEGF. CONCLUSION IL-1β, IL-6, TNF-α and VEGF levels are increased in patients with knee articular cartilage injury, and are associated with the disease severity, indicating they might play an important role in the occurrence and development of knee articular cartilage injury. Furthermore, therapeutically targeting them might be a novel approach for the treatment of keen articular cartilage injury. 展开更多
关键词 KNEE ARTICULAR cartilage injury INTERLEUKIN-1Β INTERLEUKIN-6 Tumor necrosis factor-α Vascular endothelial growth FACTOR
下载PDF
Cartilage repair techniques of the talus: An update 被引量:11
3
作者 Mike H Baums Wolfgang Schultz +1 位作者 Tanja Kostuj Hans-Michael Klinger 《World Journal of Orthopedics》 2014年第3期171-179,共9页
Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in... Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in their origin.Additionally,it is well recognised that the talar articular cartilage strongly differs from that in the knee.Despite this fact,many recommendations for the management of talar cartilage defects are based on approaches that were developed for the knee.Conservative treatment seems to work best in paediatric and adolescent patients with osteochondritis dissecans.However,depending on the size of the lesions,surgical approaches are necessary to treat many of these defects.Bone marrow stimulation techniques may achieve good results in small lesions.Large lesions may be treated by open procedures such as osteochondral autograft transfer or allograft transplantation.Autologous chondrocyte transplantation,as a restorative procedure,is well investigated in the knee and has been applied in the talus with increasing popularity and promising results but the evidence to date is poor.The goals of the current article are to summarise the different options for treating chondral and osteochondral defects of the talus and review the available literature. 展开更多
关键词 cartilage defect TALUS Repair TECHNIQUES ARTHROSCOPY MARROW stimulation MOSAICPLASTY Autologous CHONDROCYTE implantation
下载PDF
Cartilage Wear in Healthy and Osteoarthritis Joints
4
作者 Zenon Pawlak Raghuvir Pai 《Open Journal of Orthopedics》 2023年第2期55-61,共7页
This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant diff... This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant differences in their concentration. While examining the surface properties of OA joints, we found that OA PLs molecules cannot support lubrication, and increased friction was observed. Our lubrication mechanism was based on a surface active phospholipids (SAPL) multibilayer which in OA condition was deactivated and removed from the cartilage surface under OA conditions. Cartilage wettability study clearly demonstrated a significant decrease in hydrophobicity, the contact angle, θ (theta), dropping from 103° from bovine healthy cartilage to 65° in surface partially depleted and 35.1° for completely depleted surface. These results are discussed in the context that surface active phospholipid (SAPL) and lubricin, each has specific roles in a lamellar-repulsive lubrication system. However, deactivated phospholipid molecules are major indicator of cartilage wear (model) introduced in this study. 展开更多
关键词 cartilage Surface Friction (cartilage/cartilage) Osteoarthritis (OA) Surface Active Phospholipids (SAPL)/or Surface Amorphous Layer (SAL) Deactivated Phospholipids WEAR
下载PDF
Non-invasive MRI assessment of the articular cartilage in clinical studies and experimental settings
5
作者 James F Griffith Anil T Ahuja 《World Journal of Radiology》 CAS 2010年第1期44-54,共11页
Attrition and eventual loss of articular cartilage are important elements in the pathophysiology of osteoarthritis(OA).Preventing the breakdown of cartilage is believed to be critical to preserve the functional integr... Attrition and eventual loss of articular cartilage are important elements in the pathophysiology of osteoarthritis(OA).Preventing the breakdown of cartilage is believed to be critical to preserve the functional integrity of a joint.Chondral injuries are also common in the knee joint,and many patients benefit from cartilage repair.Magnetic resonance imaging(MRI) and advanced digital post-processing techniques have opened possibilities for in vivo analysis of cartilage morphology,structure,and function in healthy and diseased knee joints.Techniques of semi-quantitative scoring of human knee cartilage pathology and quantitative assessment of human cartilage have been developed.Cartilage thickness and volume have been quantified in humans as well as in small animals.MRI detected cartilage loss has been shown to be more sensitive than radiographs detecting joint space narrowing.It is possible to longitudinally study knee cartilage morphology with enough accuracy to follow the disease-caused changes and also evaluate the therapeutic effects of chondro-protective drugs.There are also several MRI methods that may allow evaluation of the glycosaminoglycan matrix or collagen network of articular car-tilage,and may be more sensitive for the detection of early changes.The clinical relevance of these methods is being validated.With the development of new therapies for OA and cartilage injury,MR images will play an important role in the diagnosis,staging,and evaluation of the effectiveness of these therapies. 展开更多
关键词 Animal model cartilage OSTEOARTHRITIS Joint space NARROWING KNEE Magnetic resonance imaging RADIOGRAPHY
下载PDF
Nano“Undercover Agents”Lodge in Cartilage to Treat Osteoarthritis
6
《Bulletin of the Chinese Academy of Sciences》 2024年第1期6-7,共2页
The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading ... The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading to joint damage.Conventional drugs cannot effectively reach this inflammatory source within the dense cartilage. 展开更多
关键词 OSTEOARTHRITIS DRUGS cartilage
下载PDF
Update on mesenchymal stem cell therapies for cartilage disorders 被引量:2
7
作者 Nikolaos K Paschos Mackenzie L Sennett 《World Journal of Orthopedics》 2017年第12期853-860,共8页
Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremend... Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremendous impact on the quality of life of affected individuals. Current management strategies have shown only a modest degree of success, while several upcoming interventions signify better outcomes in the future. Among these, stem cell therapies have been suggested as a promising new era for cartilage disorders. Certain characteristics of the stem cells, such as their potential to differentiate but also to support healing made them a fruitful candidate for lesions in cartilage, a tissue with poor healing capacity. The aim of this editorial is to provide an update on the recent advancements in the field of stem cell therapy for the management of focal cartilage defects. Our goal is to present recent basic science advances and to present the potential of the use of stem cells in novel clinical interventions towards enhancement of the treatment armamentarium for cartilage lesions. Furthermore, we highlight some thoughts for the future of cartilage regeneration and repair and to explore future perspectives for the next steps in the field. 展开更多
关键词 STEM cell cartilage CHONDRAL defect Management Bone MARROW Mesenchymal STEM cells ADIPOSE
下载PDF
Establishing proof of concept:Platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus 被引量:8
8
作者 Niall A Smyth Christopher D Murawski +3 位作者 Amgad M Haleem Charles P Hannon Ian Savage-Elliott John G Kennedy 《World Journal of Orthopedics》 2012年第7期101-108,共8页
Osteochondral lesions of the talus are common injuries in the athletic patient. They present a challenging clinical problem as cartilage has a poor potential for healing. Current surgical treatments consist of reparat... Osteochondral lesions of the talus are common injuries in the athletic patient. They present a challenging clinical problem as cartilage has a poor potential for healing. Current surgical treatments consist of reparative(microfracture) or replacement(autologous osteochondral graft) strategies and demonstrate good clinical outcomes at the short and medium term follow-up. Radiological findings and second-look arthroscopy however, indicate possible poor cartilage repair with evidence of fibrous infill and fissuring of the regenerative tissue following microfracture. Longer-term follow-up echoes these findings as it demonstrates a decline in clinical outcome. The nature of the cartilage repair that occurs for an osteochondral graft to become integrated with the native surround tissue is also of concern. Studies have shown evidence of poor cartilage integration,with chondrocyte death at the periphery of the graft, possibly causing cyst formation due to synovial fluid ingress. Biological adjuncts, in the form of platelet-rich plasma(PRP) and bone marrow aspirate concentrate(BMAC), have been investigated with regard to their potential in improving cartilage repair in both in vitro and in vitro settings. The in vitro literature indicates that these biological adjuncts may increase chondrocyte proliferation as well as synthetic capability, while limiting the catabolic effects of an inflammatory joint environment. These findings have been extrapolated to in vitro animal models, with results showing that both PRP and BMAC improve cartilage repair. The basic science literature therefore establishes the proof of concept that biological adjuncts may improve cartilage repair when used in conjunction with reparative and replacement treatment strategies for osteochondral lesions of the talus. 展开更多
关键词 OSTEOCHONDRAL lesion cartilage repair Platelet-rich plasma Bone MARROW aspirate CONCENTRATE
下载PDF
Research Progress of Osteochondral Composite Scaffolds in Tissue Engineering Cartilage Repair
9
作者 Zhongyi Zhao 《Journal of Clinical and Nursing Research》 2019年第3期11-15,共5页
Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering i... Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering is one promising strategy for cartilage repair,however,one critical issue for cartilage tissue engineering is the integration between tissue-engineered and native cartilage.In recent years,osteochondral tissue engineering has attracted growing interest for overcoming this problem.Herein,we review the development of osteochondral tissue engineering.Firstly,currently used seed cells in osteochondral tissue engineering will be described.Secondly,several types of scaffolds and their(dis)advantage for osteochondral tissue engineering will be introduced.Thirdly,the growth factors currently used in osteochondral tissue engineering will be presented and discussed. 展开更多
关键词 ARTICULAR cartilage REPAIR SEED cells biological scaffolds growth factors cartilage tissue engineering
下载PDF
New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review 被引量:10
10
作者 Giuseppe Musumeci Paola Castrogiovanni +5 位作者 Rosalia Leonardi Francesca Maria Trovato Marta Anna Szychlinska Angelo Di Giunta Carla Loreto Sergio Castorina 《World Journal of Orthopedics》 2014年第2期80-88,共9页
In this paper review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness.We illustrated the anatomical aspect of the knee join... In this paper review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness.We illustrated the anatomical aspect of the knee joint cartilage, the current state of cartilage tissue engineering, through mesenchymal stem cells and biomaterials,and in conclusion we provide a short overview on the rehabilitation after articular cartilage repair procedures.Adult articular cartilage has low capacity to repair itself,and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, result-ing in significant pain and disability. Numerous efforts have been made to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, and to date several researchers aim to implement clinical application of cell-based therapies for cartilage repair. A literature review was conducted on PubM ed, Scopus and Google Scholar using appropriate keywords, examining the current literature on the wellknown tissue engineering methods for the treatment of knee osteoarthritis. 展开更多
关键词 cartilage Repair MESENCHYMAL stem cells Scaffolds Tissue engineering OSTEOARTHRITIS
下载PDF
Effect of osteoporosis and intervertebral disc degeneration on endplate cartilage injury in rats 被引量:4
11
作者 Lei Wang Wei Cui +2 位作者 Jean Pierre Kalal Tom Van Hoof Bao-Ge Liu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第10期796-800,共5页
Objective:To investigate the effect of osteoporosis and intervertebral disc degeneration on the endplate cartilage injury in rats.Methods:A total of 48 female Sprague Dawley rats(3 months)were randomly divided into Gr... Objective:To investigate the effect of osteoporosis and intervertebral disc degeneration on the endplate cartilage injury in rats.Methods:A total of 48 female Sprague Dawley rats(3 months)were randomly divided into Groups A,B,C and D with 12 rats in each group.Osteoporosis and intervertebral disc degeneration composite model,simple degeneration model and simple osteoporosis model were prepared in Groups A,B and C respectively.After modeling,four rats of each group at 12th.18th and 24th week were sacrificed,Intervertebral height of cervical vertebra C6/C7 was measured.Micro-CT was used to image the endplate of cephalic and caudal cartilage at C6/C7 intervertebral disc.Abraded area rate of C6 caudal and C7 cephalic cartilage endplate was calculated,and then C6/C7 intervertebral disc was routinely embedded and sectioned.stained with safranin O to observe histological changes microscopically.Results:At 12,18 and24 weeks,intervertebral disc height of C6/C7 were(0.58±0.09)mm,(0.53±0.04)mm and(0.04±0.06)mm in Group A rats,(0.55±0.05)mm,(0.52±0.07)mm and(0.07±0.05)mm in Group B rats.At 24th week.intervertebral disc height of Group A rats was significantly lower than that of Group B rats(P<0.05);intervertebral disc height of Groups A and B rats at each time point were significantly lower than that of Groups C and D(P<0.05).There was no significantly statistical difference of intervertebral disc height between Groups C and D(P>0.05).At 12 and 18 weeks,the abraded rate of C6 caudal and C7 cephalic cartilage endplate in Group A rats were significantly higher than that in Groups B.C and D rats(P<0.05);the abraded rate in Group B was significantly higher than that in Groups C and D(P>0.05).Microscopic observation of CT showed that ventral defects in C6caudal or C7 cephalic cartilage endplate in Groups A and B appeared after 12 weeks of modeling;obvious cracks were found in front of the C6 and C7 vertebral body,and cartilage defect shown the trend of"repairing"at 18 and 24 weeks after modeling.Conclusions:Intervertebral disc degeneration and osteoporosis can cause damage to the cartilage endplate.Co-existence of these two factors can induce more serious damage to the endplate.which has possitive correlation with intervertebral disc degeneration.Osteoporosis plays a certain role in intervertebral disc degeneration process,and accelerates the degeneration of intervertebral disc in a specific time window. 展开更多
关键词 OSTEOPOROSIS INTERVERTEBRAL disc DEGENERATION VERTEBRAL bodies cartilage ENDPLATE Damage
下载PDF
Mesenchymal stem cells for cartilage regeneration in dogs 被引量:1
12
作者 Akari Sasaki Mitsuru Mizuno +1 位作者 Manabu Mochizuki Ichiro Sekiya 《World Journal of Stem Cells》 SCIE CAS 2019年第5期254-269,共16页
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, a... Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA;therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs;cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies. 展开更多
关键词 MESENCHYMAL stem cell Dog cartilage OSTEOARTHRITIS REGENERATIVE MEDICINE VETERINARY MEDICINE
下载PDF
Robotic in situ bioprinting for cartilage tissue engineering
13
作者 Yaxin Wang Rúben F Pereira +3 位作者 Chris Peach Boyang Huang Cian Vyas Paulo Bartolo 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期118-142,共25页
Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for effi... Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for efficacious cartilage repair,and long-term patient outcomes are not satisfying.Three-dimensional bioprinting has been used to fabricate biochemical and biophysical environments that aim to recapitulate the native microenvironment and promote tissue regeneration.However,conventional in vitro bioprinting has limitations due to the challenges associated with the fabrication and implantation of bioprinted constructs and their integration with the native cartilage tissue.In situ bioprinting is a novel strategy to directly deliver bioinks to the desired anatomical site and has the potential to overcome major shortcomings associated with conventional bioprinting.In this review,we focus on the new frontier of robotic-assisted in situ bioprinting surgical systems for cartilage regeneration.We outline existing clinical approaches and the utilization of robotic-assisted surgical systems.Handheld and robotic-assisted in situ bioprinting techniques including minimally invasive and non-invasive approaches are defined and presented.Finally,we discuss the challenges and potential future perspectives of in situ bioprinting for cartilage applications. 展开更多
关键词 in situ bioprinting cartilage tissue engineering robotic in situ bioprinting minimally invasive surgery bioinks
下载PDF
Poly(<i>N</i>-isopropylacrylamide-co-<i>N</i>-<i>tert</i>-butylacrylamide)- grafted hyaluronan as an injectable and self-assembling scaffold for cartilage tissue engineering 被引量:1
14
作者 Kazuaki Muramatsu Yuji Saito +2 位作者 Takuya Wada Hiroyuki Hirai Fujio Miyawaki 《Journal of Biomedical Science and Engineering》 2012年第11期639-646,共8页
Novel poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)-grafted hyaluronan [P(NIPAAm-co-NtBAAm)-g-HA] has been developed as a modified derivative to improve phase-transition characteristics of PNIPAAm-g-HA, which ... Novel poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)-grafted hyaluronan [P(NIPAAm-co-NtBAAm)-g-HA] has been developed as a modified derivative to improve phase-transition characteristics of PNIPAAm-g-HA, which has a lower critical solution temperature (LCST) of approximately 32°C. This promising self-assembling biomaterial has potential as an injectable scaffold for in situ cartilage tissue engineering. LCST of the P(NIPAAm-co-NtBAAm)-g-HA decreased to approximately 3.6°C compared to that of the original PNIPAAm-g-HA. This modification enabled self-assembly at body temperatures lower than the temperature of the parental PNIPAAm-g-HA molecule. Cytotoxicity and acute systemic toxicity assays revealed that P(NIPAAm-co-NtBAAm)-g-HA was not hazardous. The DNA content of chondrogenic differentiated mesenchymal stem/stromal cells (MSCs) embedded in the gels was higher than that of biomaterial-free aggregates during the culture periods. Cartilage-related genes were also expressed in chondrogenic differentiated MSCs embedded in the P (NIPAAm-co-NtBAAm)-g-HA hydrogel. Specifically, an increased expression of SRY-related HMG box-containing gene 9 (Sox9) observed in the hydrogel group compared to controls. These data suggest that P(NIPAAm-co-NtBAAm)-g-HA is a promising injectable scaffold with thermoresponsive properties suitable for in situ cartilage tissue engineering. 展开更多
关键词 Thermally Responsive Material cartilage Tissue Engineering Biocompatibility Mesenchymal Cells
下载PDF
3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction
15
作者 Xingyu Gui Zhiyu Peng +13 位作者 Ping Song Li Chen Xiujuan Xu Hairui Li Pei Tang Yixi Wang Zixuan Su Qingquan Kong Zhenyu Zhang Zhengyong Li Ying Cen Changchun Zhou Yujiang Fan Xingdong Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期451-463,共13页
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional... At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction. 展开更多
关键词 MICROTIA 3D printing Polylactic acid(PLA)polymer scaffolds Gelatin methacrylamide cartilage reconstruction
下载PDF
Repair effect of articular cartilage defects by nitric oxide synthase inhibitor
16
作者 王吉兴 《外科研究与新技术》 2003年第2期92-93,共2页
Objective To discuss repairing effects of articular cartilage defects by nitric oxide synthase inhibitor (S methylisothiourea, SMT), and explore the role of nitric oxide in cartilage repair. Methods Full-thickness def... Objective To discuss repairing effects of articular cartilage defects by nitric oxide synthase inhibitor (S methylisothiourea, SMT), and explore the role of nitric oxide in cartilage repair. Methods Full-thickness defects of cartilage were created in the intercondylar trochlear groove of femur of thirty-six adult New Zealand white rabbits, and were divided into three gorups. Twenty-four defects were untreated as the control, twenty-four were filled with fibrin glue and impregnated with rhBMP AS rhBMP group, the rest twenty-four were filled with fibrin glue and impregnated with rhBMP, and hypodermic injection with SMT as SMT group. The animals were sacrified at sixteen weeks postoperatively, and the gross appearance of the defect was estimated. The repair tissue was examined histologically and was evaluated according to the grading scale of histology. The amount of released NO and the activities of nitric oxide synthase(NOS) were examined by chemical colorimetry. The distribution of type-Ⅰ , Ⅱ 展开更多
关键词 ARTICULAR cartilage histologically HISTOLOGY FEMUR defects APPEARANCE repair UNTREATED filled
下载PDF
Use of bone morphogenetic proteins in mesenchymal stemcell stimulation of cartilage and bone repair 被引量:22
17
作者 Sonia Scarfì 《World Journal of Stem Cells》 SCIE CAS 2016年第1期1-12,共12页
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively partici... The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair. 展开更多
关键词 MESENCHYMAL stem cells cartilage Bonerepair BONE morphogenetic PROTEIN
下载PDF
Mesenchymal stem cells as a potent cell source for articular cartilage regeneration 被引量:13
18
作者 Mohamadreza Baghaban Eslaminejad Elham Malakooty Poor 《World Journal of Stem Cells》 SCIE CAS 2014年第3期344-354,共11页
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimul... Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review. 展开更多
关键词 MESENCHYMAL stem cells REGENERATION ARTICULAR cartilage CELL therapy
下载PDF
Mesenchymal stem cells for cartilage regeneration in osteoarthritis 被引量:9
19
作者 Baldur Kristjánsson Sittisak Honsawek 《World Journal of Orthopedics》 2017年第9期674-680,共7页
Osteoarthritis(OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with l... Osteoarthritis(OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with lack of conventional treatment, patients are often left with no other choices than arthroplasty. Over the last years, multipotent stromal cells have been used in efforts to treat OA. Mesenchymal stem/progenitor cells(MSCs) are stromal cells that can differentiate into bone, fat, and cartilage cells. They reside within bone marrow and fat. MSCs can also be found in synovial joints where they affect the progression of OA. They can be isolated and proliferated in an incubator before being applied in clinical trials. When it comes to treatment, emphasis has hitherto been on autologous MSCs, but allogenic cells from healthy donors are emerging as another source of the cells. The first adaptations of MSCs revolved in the use of cellrich matrix, delivered as invasive surgical procedure, which resulted in production of hyaline cartilage and fibrocartilage. However, the demand for less invasive delivery of cells has prompted the use of direct intraarticular injections, wherein a large amount of suspended cells are implanted in the cartilage defect. 展开更多
关键词 INTRA-ARTICULAR INJECTION MESENCHYMAL stem cells OSTEOARTHRITIS REGENERATION cartilage
下载PDF
Influence of bone morphogenetic protein on articular cartilage regeneration following periosteal grafting
20
作者 Yimin Zhang Xin Jiang Yongzhi Guo 《Journal of Biomedical Science and Engineering》 2013年第1期25-30,共6页
Background: Autologous periosteal grafting is used as treatment for articular cartilage defect. Objective: To study the effect of bone morphogenetic protein (BMP) on articular cartilage regeneration following perioste... Background: Autologous periosteal grafting is used as treatment for articular cartilage defect. Objective: To study the effect of bone morphogenetic protein (BMP) on articular cartilage regeneration following periosteal grafting. Methods: 16 healthy 15 week-old New Zealand white rabbits of both sexes (32 knees) were randomly divided into experimental group (group A) and control group (group B). A4.0 mmdiameter full-thickness articular cartilage defect was created in the femoral intercondylar fossa in all rabbits. Following this, a4.0 mmdiameter section of the periosteum was harvested from the anteromedial part of the upper tibial bone. In group A (eight rabbits, 16 knees), the cartilage defect was covered with periosteum, into which 20 μg BMP and 20% Pluronic were injected. In group B (eight rabbits, 16 knees), the cartilage defect was covered with periosteum, into which the same dosage of 0.9% NS (Normal saline) and 20% Pluronic were injected. All rabbits were sacrificed at 4, 8, and 12 weeks postoperatively, the cartilage defect areas were examined macroscopically and microscopically, and the morphology of the chondrocytes and collagen fibers were examined by scanning electron microscopy. Results: The filling of the defects with regenerated tissue was observed in both the group. The most notable improvement was that the cartilage regeneration in group A was obviously superior to that in group B, with the total histological score in group A significantly higher. Conclusion: BMP is an effective factor that could promote regeneration of articular cartilage and lead to successful cartilaginous resurfacing following periosteal 展开更多
关键词 Bone Morphogenetic Protein (BMP) ARTICULAR cartilage REGENERATION PERIOSTEAL GRAFTING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部