期刊文献+
共找到9,655篇文章
< 1 2 250 >
每页显示 20 50 100
Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma 被引量:37
1
作者 Du-Hu Liu Xue-Yong Zhang Dai-Ming Fan Yu-Xin Huang Jin-Shan Zhang Wei-Quan Huang Yuan-Qiang Zhang Qing-Sheng Huang Wen-Yu Ma Yu-Bo Chai Ming Jin Institute of Digestive Disease,Xijing Hospital,~2 Department of Gastroenterology,Tangdu Hospital,~3Department of Histology and Embryology,~4 Department of Microbiology,~5 Department of Biochemistry,Fourth Military Medical University,Xi’an 710033,Shaanxi Province,China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2001年第4期500-505,共6页
AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing rec... AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing receptor (KDR) in human gastric cancer tissue were observed by immunohistochemical staining. VEGF levels were manipulated in human gastric cancer cell using eukaryotic expression constructs designed to express the complete VEGF(165) complimentary DNA in either the sense or antisense orientation. The biological changes of the cells were observed in which VEGF was up-regulated or down-regulated. RESULTS: VEGF-positive rate was 50%, and VEGF was mainly localized in the cytoplasm and membrane of the tumor cells, while KDR was mainly located in the membrane of vascular endothelial cells in gastric cancer tissues and peri-cancerous tissue. In 2 cases of 50 specimens, the gastric cancer cells expressed KDR, localized in both the cytoplasm and membrane. Introduction of VEGF(165) antisense into human gastric cancer cells (SGC-7901, immunofluorescence intensity, 31.6%)) resulted in a significant reduction in VEGF-specific messenger RNA and total and cell surface VEGF protein (immunofluorescence intensity, 8.9%) (P【0.05). Conversely, stable integration of VEGF(165) in the sense orientation resulted in an increase in cellular and cell surface VEGF (immunofluorescence intensity, 75.4%) (P【0.05). Lowered VEGF levels were associated with a marked decrease in the growth of nude mouse xenografted tumor (at 33 days postimplantation, tumor volume: 345.40 +/- 136.31 mm3)(P【0.05 vs control SGC-7901 group: 1534.40 +/- 362.88 mm3), whereas up-regulation of VEGF resulted in increased xenografted tumor size (at 33 days postimplantation, tumor volume: 2350.50 +/- 637.70 mm3) (P【0.05 vs control SGC-7901 group). CONCLUSION: This study provides direct evidence that VEGF plays an important role in the oncogenesis of human gastric cancer. 展开更多
关键词 gene Expression regulation Neoplastic Adult Aged Animals Cell Division Cloning Molecular DNA Antisense DNA Complementary Endothelial Growth Factors Endothelium Vascular Female Humans LYMPHOKINES Male MICE Mice Nude Middle Aged Neovascularization Pathologic Receptor Protein-Tyrosine Kinases Receptors Growth Factor Receptors Vascular Endothelial Growth Factor Stomach Neoplasms Transfection Tumor Cells Cultured Vascular Endothelial Growth Factor A Vascular Endothelial Growth Factors
下载PDF
Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases 被引量:6
2
作者 Taro Tsujimura Mana Idei +2 位作者 Masahiro Yoshikawa Osamu Takase Keiichi Hishikawa 《World Journal of Stem Cells》 SCIE CAS 2016年第9期288-296,共9页
The gene encoding bone morphogenetic protein-7(BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the... The gene encoding bone morphogenetic protein-7(BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases. 展开更多
关键词 Bone morphogenetic protein-7 Therapeutics Kidney Development NEPHRON PROGENITOR cells Disease Regeneration CHROMATIN CONFORMATION gene expression gene regulation
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
3
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Relevant Enzymes, Genes and Regulation Mechanisms in Biosynthesis Pathway of Stilbenes
4
作者 Di LU Wei ZHAO Shujin ZHAO 《Open Journal of Medicinal Chemistry》 2012年第2期15-23,共9页
Stilbenes are natural phenolic compounds which function as antimicrobial phytoalexins in plants and affect human health as cardioprotective, antibaceteria, antioxidative and antineoplastic agents. In this review, the ... Stilbenes are natural phenolic compounds which function as antimicrobial phytoalexins in plants and affect human health as cardioprotective, antibaceteria, antioxidative and antineoplastic agents. In this review, the progresses of study on relevant enzymes, genes, and regulation mechanism in biosynthesis pathway of stilbenes are described. Here we introduce a holistic and systematic method of researching relevant enzymes, genes and other regulatory factors in biosynthesis pathway of stilbenes—Systems biology. The application of knowledge of relative enzymes, genes and regulation mechanisms in stilbenes biosynthesis in metabolic engineering which is used as a tool of improving the disease resistance of plants and health caring quality of crops is also discussed. 展开更多
关键词 STILBENES RELEVANT ENZYME regulation mechanism BIOSYNTHESIS Pathway Systems BIOLOGY
下载PDF
Genomic Instability in Cancer II: 4N-Skewed (90°) Reductive Division via Fragile Sites to Fitness Increase for Solid and Hematological Cancer Beginnings 被引量:2
5
作者 Kirsten H. Walen 《Journal of Cancer Therapy》 2019年第7期537-564,共28页
The objective herein was to connect the ontogeny process of diplochromosomal, amitotic, 4n-skewed division-system, to cytogenetic deficiency lesions in satellite, repetitive DNAs, especially in the chromosomal fragile... The objective herein was to connect the ontogeny process of diplochromosomal, amitotic, 4n-skewed division-system, to cytogenetic deficiency lesions in satellite, repetitive DNAs, especially in the chromosomal fragile sites, some 100 distributed over the genome. These latter studies had shown that chemical induced replication-stress led to un-replicated lesions in these fragile sites, which from inaccurate repair processes caused genomic instability. In the chain of events of the ontogeny process to the special tetraploidy, it was proposed that primary damaged human cells could undergo replication stress from repair-process present during cell replication, a suggestion verified by X-ray damaged cells producing the unstable fragile sites (see text). The cancer-importance for therapy is recognition of cell cycle change for the 4n derivative fitness-gained, diploid progeny cells. An open question is whether RB controlling G1 to S-period is mutated at this suggested tumorigenesis initiating phase, and if so, with what consequences for therapy. The fragile site studies further showed that repair of repetitive DNAs could produce two types of genomic changes: single gene mutations and CNVs, which were here shown to be chromosomally located on “borders” to repairing satellite lesions. This genomic placement was found to correspond to mutations identified in tumor sequencing (p53, Rb, MYC), favoring a bad luck location for their cancer “mutational nature”. The CNVs in cancers, are here seen as molecular expressions of long-known cytogenetic HSRs and DMs also with demonstrated origin from amplifications of single genes. Over-expression of oncogenes was hinted of being from duplications, but Drosophila genetics demonstrated the opposite, gene inactivation. The reduced eye-size from dominant, BAR-Ultra-Bar-eye phenotypes, was caused by duplications, inactivating the genetic system for eye-size. The finding of CNVs showing “evasion” of the immune system suggests, inactivation of immune-determining genetics. Since mutated genes on borders to satellite DNAs are a fact in hematological cancers, the 4n-skewed division-system is suggested to replace debated leukemogenesis with fitness-gain from molecular mutations. For these cancers the question is how normal bone marrow cells attain genomic damage for special tetraploidy, which was referred to studies of cells moving in artificial marrow-like substrate, needing serious attention. 展开更多
关键词 Centrifugal 90° Turn CENTROSOME Absence Mitotic Slippage Process Diplochromosomes Mutator mechanism Satellite DNA MUTATIONS Fragile Site Instability Repair MUTATIONS Copy Number Variants CHROMOSOME Nuclear Domains HEMATOLOGIC TRANSLOCATIONS Density Bone Marrow Substrate Abnormal Laminar Proteins Chromosome/gene UPD Haplo-Insufficiency
下载PDF
Applying a highly specific and reproducible cDNA RDA method to clone garlic up-regulated genes in human gastric cancer cells 被引量:24
6
作者 Yong Li You-Yong Lu,Beijing Institute for Cancer Research,Beijing Laboratory of Molecular Oncology,School of Oncology,Peking University,Beijing 100034,China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2002年第2期213-216,共4页
AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method b... AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). Bam H I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products. RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72h. CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes. 展开更多
关键词 gene Expression regulation Neoplastic Sequence Analysis DNA Allyl Compounds Amyloid beta-Protein Precursor Base Sequence Carrier Proteins Cloning Molecular Expressed Sequence Tags GARLIC gene Library Humans Molecular Sequence Data Plasminogen Inactivators Platelet Aggregation Inhibitors Receptors Cell Surface Research Support Non-U.S. Gov't Stomach Neoplasms Sulfides Tumor Cells Cultured Viral Nonstructural Proteins
下载PDF
Study on gene expression patterns and functional pathways of peripheral blood monocytes reveals potential molecular mechanism of surgical treatment for periodontitis 被引量:4
7
作者 Jin-Ji Ma Hong-Mei Liu +2 位作者 Xiang-Hua Xu Li-Xin Guo Qing Lin 《World Journal of Clinical Cases》 SCIE 2019年第12期1383-1392,共10页
BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is... BACKGROUND Periodontitis is a chronic inflammation of periodontal supporting tissue caused by local factors. Periodontal surgery can change the gene expression of peripheral blood mononuclear cells. However, little is known about the potential mechanism of surgical treatment for periodontitis. AIM To explore the potential molecular mechanism of surgical treatment for periodontitis. METHODS First, based on the expression profiles of genes related to surgical treatment for periodontitis, a set of expression disorder modules related to surgical treatment for periodontitis were obtained by enrichment analysis. Subsequently, based on crosstalk analysis, we proved that there was a significant crosstalk relationship between module 3 and module 5. Finally, based on predictive analysis of multidimensional regulators, we identified a series of regulatory factors, such as endogenous genes, non-coding RNAs (ncRNAs), and transcription factors, which have potential regulatory effects on periodontitis. RESULTS A total of 337 genes related to surgical treatment for periodontitis were obtained, and 3896 genes related to periodontitis were amplified. Eight expression modules of periodontitis were obtained, involving the aggregation of 2672 gene modules. These modules are mainly involved in G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger, and adenylate cyclasemodulating G-protein coupled receptor signaling pathway. In addition, eight endogenous genes (including EGF, RPS27A, and GNB3) were screened by network connectivity analysis. Finally, based on this set of potential dysfunction modules, 94 transcription factors (including NFKB1, SP1, and STAT3) and 1198 ncRNAs (including MALAT1, CRNDE, and ANCR) were revealed. These core regulators are thought to be involved in the potential molecular mechanism of periodontitis after surgical treatment. CONCLUSION Based on the results of this study, we can show biologists and pharmacists a new idea to reveal the potential molecular mechanism of surgical treatment for periodontitis, and provide valuable reference for follow-up treatment programs. 展开更多
关键词 Peripheral blood MONONUCLEAR cells gene EXPRESSION DYSregulation module POTENTIAL molecular mechanism gene EXPRESSION pattern
下载PDF
Involvement of chromatin and histone acetylation in the regulation of HIV-LTR by thyroid hormone receptor 被引量:4
8
作者 HsiaSC WangH 《Cell Research》 SCIE CAS CSCD 2001年第1期8-16,共9页
The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among th... The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner. 展开更多
关键词 ACETYLATION Acquired Immunodeficiency Syndrome Animals CHROMATIN DIMERIZATION gene Expression regulation Viral HIV Long Terminal Repeat HIV-1 Histone Deacetylases HISTONES Ligands NF-kappa B OOCYTES Receptors Retinoic Acid Receptors Thyroid Hormone Response Elements Retinoid X Receptors Transcription Factors Xenopus laevis
下载PDF
Epigenetic regulation of stemness maintenance in the neurogenic niches
9
作者 Raquel Montalbán-Loro Ana Domingo-Muelas +1 位作者 Alexandra Bizy Sacri R Ferrón 《World Journal of Stem Cells》 SCIE CAS 2015年第4期700-710,共11页
In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells(NSCs) with the capacity to ... In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells(NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs populationis established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parentalspecific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches. 展开更多
关键词 NEUROgeneSIS Neural stem cell EPIgeneTICS gene expression regulation CHROMATIN modifications DNA METHYLATION
下载PDF
Regulation of fim genes in uropathogenic Escherichia coli 被引量:2
10
作者 William R Schwan 《World Journal of Clinical Infectious Diseases》 2011年第1期17-25,共9页
Uropathogenic Escherichia coli(UPEC)is the leading cause of urinary tract infections in women,causing significant morbidity and mortality in this population.Adherence to host epithelial cells is a pivotal step in the ... Uropathogenic Escherichia coli(UPEC)is the leading cause of urinary tract infections in women,causing significant morbidity and mortality in this population.Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC.One of the most important virulence factors involved in mediating this attachment is the type 1 pilus(type 1 fimbria)encoded by a set of fim genes arranged in an operon.The expression of type 1 pili is controlled by a phenomenon known as phase variation,which reversibly switches between the expression of type 1 pili(Phase-ON)and loss of expression(Phase-OFF).Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS,which lines up to allow transcription,whereas transcription of the structural gene is silenced in Phase-OFF cells.The orientation of the fimS invertible element is controlled by two site-specific recombinases,FimB and FimE.Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins,which in turn play vital roles in modulating this phase switching ability.The role of fim gene regulation in UPEC pathogenesis will be discussed. 展开更多
关键词 TYPE 1 FIMBRIAE TYPE 1 PILI gene regulation Uropathogenic ESCHERICHIA coli Urinary TRACT
下载PDF
The Unexpected Existence of Coding and Non-Coding Fragments along the Eukaryotic Gene
11
作者 Pietro Volpe 《Advances in Biological Chemistry》 2015年第2期98-125,共28页
The pathways leading to synthesis and post-synthetic modification of DNA employed methionine as donor of atoms: the carbon that came from its –CH3 served for DNA replication and repair either in bacteria or humans;it... The pathways leading to synthesis and post-synthetic modification of DNA employed methionine as donor of atoms: the carbon that came from its –CH3 served for DNA replication and repair either in bacteria or humans;its entire –CH3 served instead for building N6-methyladenine and 5-methylcytosine on bacterial DNA and 5-methylcytosine alone on human DNA. In humans, although a slight extra-S asymmetric methylation appeared de novo yielding on parental DNA 5’-m5CpC-3’/ 3’-GpG-5’, 5’-m5CpT-3’/3’-GpA-5’ and 5’-m5CpA-3’/3’-GpT-5’ monomethylated dinucleotide pairs, a heavy symmetric methylation involved in S semiconservatively newly made DNA to guarantee genetic maintenance of –CH3 in 5’-m5CpG-3’/3’-Gpm5C-5’ dimethylated dinucleotide pairs. In this framework, an inverse correlation was found between bulk genomic DNA methylation occurring in S and bulk polyA-containing pre-mRNA transcription taking place in G1 and G2. Thus, probes of 1 × 106 Daltons (constructed using sheared by sonication newly made methylated DNA filaments) revealed a modular organization in genes: after the hypermethylated promoter, they exhibited an alternation of unmethylated coding and methylated uncoding sequences. This encouraged the search for a language that genes regulated by methylation should have in common. An initial deciphering of restriction minimaps with hypomethylatable exons vs. hypermethylatable promoters and introns was improved when the bisulfite technique allowed a direct sequencing of m5C. In lymphocytes, where the transglutaminase gene is inactive, its promoter exhibited two fully methylated CpG-rich domains at 5’ and one fully unmethylated CpG-rich domain at 3’, including the site +1 and a 5’-UTR. At variance, in HUVEC cells, where the transglutaminase gene is active, in the first CpG-rich domain of promoter few doublets lost their –CH3. Such an inverse correlation suggested new hypotheses especially in connection with repair-modification: UV radiation would cause demethylation in given loci of a promoter by chance, whilst even a partial demethylation in this promoter would be able to resume a previously silent pre-mRNA transcription. 展开更多
关键词 CODING vs. NON-CODING Pre-Messenger RNA Regions EXONS and INTRONS Multigenic and MONOGENIC TRANSCRIPTIONAL Units regulation of gene Expression Repair-Modification
下载PDF
Thansgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system 被引量:12
12
作者 DengXY WeiYZ 《Cell Research》 SCIE CAS CSCD 2001年第2期156-160,共5页
After pre-culture and treatment of osmosis, cotyledons of immature peanut (Arachis hypogaea L.) zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resist... After pre-culture and treatment of osmosis, cotyledons of immature peanut (Arachis hypogaea L.) zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resistance to hygromycin and a chimeric intron-gus gene. Selection for hygromycin resistant calluses and somatic embryos was initiated at 10th d post-bombardment on medium containing 10-25 mg/L hygromycin. Under continuous selection, hygromycin resistant plantlets were regenerated from somatic embryos and were recovered from nearly 1.6% of the bombarded cotyledons. The presence and integration of foreign DNA in regenerated hygromycin resistant plants was confirmed by PCR (polymerase chain reaction) for the intron-gus gene and by Southern hybridization of the hph gene. GUS enzyme activity was detected in leaflets from transgenic plants but not from control, non-transformed plants. The production of transgenic plants are mainly based on a newly improved somatic embryogenesis regeneration system developed by us. 展开更多
关键词 CINNAMATES Anti-Bacterial Agents Arachis hypogaea Cell Culture Techniques CHIMERA COTYLEDON Drug Resistance gene Expression regulation Plant genetic Engineering Hygromycin B Osmosis Plants genetically Modified Plasmids Regeneration Research Support Non-U.S. Gov't Seeds Transformation genetic
下载PDF
Systems biology applications to study mechanisms of human immunodeficiency virus latency and reactivation
13
作者 Cory H White Bastiaan Moesker +1 位作者 Angela Ciuffi Nadejda Beliakova-Bethell 《World Journal of Clinical Infectious Diseases》 2016年第2期6-21,共16页
Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency bi... Eradication of human immunodeficiency virus(HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents(LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliableidentification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials. 展开更多
关键词 gene expression Microarrays RNA-Seq Systems biology Human IMMUNODEFICIENCY virus VIRAL LATENCY Disease ERADICATION Biomarkers Molecular mechanisms LATENCY reversing agents
下载PDF
Regulation of RNA binding proteins in trypanosomatid protozoan parasites
14
作者 María Albertina Romaniuk Gabriela Cervini Alejandro Cassola 《World Journal of Biological Chemistry》 CAS 2016年第1期146-157,共12页
Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening pa... Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins(RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3' untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of m RNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy. 展开更多
关键词 TRYPANOSOMA POSTTRANSCRIPTIONAL gene expression RIBONUCLEOPROTEIN complexes RNA-BINDING protein Developmental regulation Sleeping sickness Posttranslational modification Phosphorylation CHAGAS disease
下载PDF
Building Quantitative Gene Regulatory Mechanism in Quorum Sensing in <i>Pseudomonas aeruginosa</i>Using Transcriptomic Data
15
作者 Shaomin Yan Guang Wu 《Journal of Biomedical Science and Engineering》 2020年第2期13-35,共23页
A large amount of transcriptomic data provides opportunities 1) to verify the gene regulatory mechanism, which is usually obtained from a single experiment, at population level;2) to uncover the gene regulatory mechan... A large amount of transcriptomic data provides opportunities 1) to verify the gene regulatory mechanism, which is usually obtained from a single experiment, at population level;2) to uncover the gene regulatory mechanism at population level;and 3) to build a quantitatively gene regulatory mechanism. One of the best studied regulatory mechanisms in bacteria is the quorum sensing (QS), which plays an important role in regulation of bacteria population behaviors such as antibiotic production, biofilm formation, bioluminescence, competence, conjugation, motility and sporulation. Pseudomonas aeruginosa is a Gram-negative bacterium causing diseases in plants, animals, humans, and its biofilm and drug-resistance become great concerns in clinics. P. aeruginosa has three QS systems including a specific one for Pseudomonas. In this study, the transcriptomic data of P. aeruginosa were combined from 104 publications and QS gene expressions were analyzed under different experimental conditions. The results demonstrate the quantitatively regulatory mechanisms of QS genes at population level including 1) to rank and group QS-related genes according to their activity;2) to quantitatively define the role of a single global regulator;3) to find out the probability that a global regulator impacts QS genes and the probability that a QS gene responds to global regulators;and 4) to search for overlapped genes under four types of experimental conditions. These results provide integrative information on understanding the regulation of QS genes at population level. 展开更多
关键词 gene QUANTITATIVE Regulatory mechanism Pseudomonas aeruginosa QUORUM Sensing TRANSCRIPTOMIC Analysis
下载PDF
Polyploid Gene Expression and Regulation in Polysomic Polyploids 被引量:2
16
作者 Pham Van Hieu 《American Journal of Plant Sciences》 2019年第8期1409-1443,共35页
Polyploidization is one of the most crucial pathways in introducing speciation and broadening biodiversity, especially in the Plant Kingdom. Although the majority of studies have focused only on allopolyploid or disom... Polyploidization is one of the most crucial pathways in introducing speciation and broadening biodiversity, especially in the Plant Kingdom. Although the majority of studies have focused only on allopolyploid or disomic polyploids, polysomic polyploid species have occurred frequently in higher plants. Due to the occurrence of the capabilities of more copies of alleles in a locus which can have additive dosage effects and/or allelic interactions, polysomic polyploids can lead to unique gene regulations to silence or adjust the expression level to create variations in organ size, metabolic products, and abiotic stress tolerance and biotic stress resistance, etc. This review aims to comprehensively summarize the contemporary understanding and findings concerning the molecular mechanisms of gene expression as well as gene regulation in natural typed and resynthesized polysomic polyploid plants. The review investigates the molecular level of phenomena in polysomic polyploid plants such as 1) typically enlarging organ size and stabilizing meiosis, 2) increasing phytochemical content and metabolic products, 3) enhancing the ability to adapt with biotic and abiotic stress, and 4) changing in gene regulation to silence or adjust the expression levels involve in sequence elimination, methylation, gene suppression, subfunctionalization, neo-functionalization, and transposon activation. 展开更多
关键词 Polysomic POLYPLOIDS Allelic INTERACTIONS gene EXPRESSION and regulation Evolution
下载PDF
Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis 被引量:7
17
作者 Yu Liang Cheng Zhang Dong-Qiu Dai 《World Journal of Gastroenterology》 SCIE CAS 2019年第26期3392-3407,共16页
BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncog... BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences.However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.AIM To identify and analyze methylation-regulated differentially expressed genes(MeDEGs) in colon cancer by bioinformatics analysis.METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450 K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis(GSEA) and investigation of protein-protein interactions(PPI) were performed to clarify the function of prognosis-related genes.RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified asMeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor(GDNF) and reelin(RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha(GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1 B1,disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptorrelated protein 8, and NMDA 2 B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including "RNA degradation," "ribosome," "mismatch repair," "cell cycle" and "base excision repair."CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression.MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment. 展开更多
关键词 COLON CANCER Bioinformatics analysis The CANCER Genome Atlas project DNA METHYLATION Methylation-regulated DIFFERENTIALLY EXPRESSED genes Overall survival
下载PDF
The concept of gene therapy for glaucoma:the dream that has not come true yet
18
作者 Robert Sulak Xiaonan Liu Adrian Smedowski 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期92-99,共8页
Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene dise... Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene disease,the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells,especially,in intraocular-pressure-independent manner.The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tro pism to retinal ganglion cells,res ulting in long-term expression and low immunogenic profile.The gene thera py studies recruit inducible and genetic animal models of optic neuropathy,like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model.Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors(i.e.,brain derived neurotrophic factor,and its receptor TrkB),regulation of apoptosis and neurodegeneration(i.e.,Bcl-xl,Xiap,FAS system,nicotinamide mononucleotide adenylyl transferase 2,Digit3 and Sarm1),immunomodulation(i.e.,Crry,C3 complement),modulation of neuroinflammation(i.e.,e rythropoietin),reduction of excitotoxicity(i.e.,Com KIlα)and transcription regulation(i.e.,Max,Nrf2).On the other hand,some of gene therapy studies focus on lowering intra ocular pressure,by impacting genes involved in both,decreasing aqueous humor production(i.e.,aquaporin 1),and increasing outflow facility(i.e.,COX2,prostaglandin F2a receptor,RhoA/RhoA kinase signaling pathway,MMP1,Myocilin).The goal of this review is to summarize the current stateof-art and the direction of development of gene therapy strategies for glaucomatous neuropathy. 展开更多
关键词 adeno-associated virus gene editing gene therapy GLAUCOMA IOP lowering IOP-independent mechanisms NEUROPROTECTION optic nerve optic neuropathy retinal ganglion cells
下载PDF
Cu-based materials for electrocatalytic CO_(2) to alcohols:Reaction mechanism,catalyst categories,and regulation strategies
19
作者 Yaru Lei Yaxin Niu +8 位作者 Xiaolong Tang Xiangtao Yu Xiubing Huang Xiaoqiu Lin Honghong Yi Shunzheng Zhao Jiaying Jiang Jiyue Zhang Fengyu Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期593-611,I0013,共20页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols. 展开更多
关键词 Electrocatalytic CO_(2)RR Cu-based catalyst ALCOHOLS Reaction mechanism regulation strategies
下载PDF
Methylation status of c-fms oncogene in HCC and its relationship with clinical pathology 被引量:16
20
作者 Jun Cui Dong Hua Yang +1 位作者 Xiang Jun Bi Zi Rong Fan Department of Gastroenterology, Zhujiang Hospital, The First Military Medical University, Guangzhou 510282, Guangdong Province, China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2001年第1期136-139,共4页
INTRODUCTIONThe mechanism that DNA hypomethylation leads toactivation of oncogene and occurrence of malignantneoplasm is being increasingly recognized byresearchers. Normal DNA methylation playsimportant role in stabi... INTRODUCTIONThe mechanism that DNA hypomethylation leads toactivation of oncogene and occurrence of malignantneoplasm is being increasingly recognized byresearchers. Normal DNA methylation playsimportant role in stabilizing the phenotype of cell.DNA methylation status reduction and/or patternalteration are related to activation and abnormallyhigh expression of some oncogenes and cellularmalignancy[1-6]. c-fms oncogene encodes for colonystimulating factor 1 receptor (CSF-1R)[7], c-fms/CSF-1R was highly expressed in hepatocellularcarcinoma (HCC) tissue, but the mechanismremained obscure[8,9]. 展开更多
关键词 Adult Aged Blotting Southern Carcinoma Hepatocellular DNA Methylation Female gene Expression regulation Neoplastic Humans Liver Liver Neoplasms Male Middle Aged Phenotype Receptor Macrophage Colony-Stimulating Factor Research Support Non-U.S. Gov't
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部