All tissues in the body are subjected externally to gravity and internally by collagenfibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis.Mechanotransduction involve...All tissues in the body are subjected externally to gravity and internally by collagenfibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis.Mechanotransduction involves mechanical work(force through a distance)and energy storage as kinetic and potential energy.This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components.It involves the application of energy directly to cells through integrin-mediated processes,cell-cell connections,stretching of the cell cytoplasm,and activation of the cell nucleus via yes-associated protein(YAP)and transcriptional coactivator with PDZ-motif(TAZ).These processes involve numerous complexes,intermediate molecules,and multiple pathways.Several pathways have been identified from research studies on vertebrate cell culture and from studies in invertebrates.These pathways involve mechanosensors and other molecules that activate the pathways.This review discusses the mitogen-activated protein kinase(MAPK)family,Hippo,Hedgehog,and Wingless-related integration site(WNT)/βcatenin signaling pathways.The mediators covered includeβcatenin,ion channels,growth factors,hormone receptors,members of the Ras superfamily,and components of the linker of nucleoskeleton and cytoskeleton(LINC)complex.However,the interrelationship among the different pathways remains to be clarified.Integrin-mediated mechanotransduction involves direct tensile loading and energy applied to the cell membrane via collagenfibril stretching.This energy is transferred between cells by stretching the cell-cell connections involving cadherins and the WNT/βcatenin pathway.These alterations induce changes in intracellular events in the cytoskeleton and nuclear skeleton caused by the release of YAP and TAZ.These coactivators then penetrate through the nuclear pores and influence nuclear cell function.Alteration in the balance of forces and energy applied to cells and tissues is hypothesized to shift the cell-extracellular matrix mechanical equilibrium by modifying mechanotransduction.The shift in equilibrium can lead to either tissue synthesis,genetic modifications,or promotefibrotic diseases,including epithelial cell-derived cancers,depending on the local metabolic conditions.展开更多
BACKGROUND Long noncoding RNAs(lncRNAs)have been identified to play important roles in the development and progression of various tumors,including gastric cancer(GC).However,the molecular role of lncRNAs in GC progres...BACKGROUND Long noncoding RNAs(lncRNAs)have been identified to play important roles in the development and progression of various tumors,including gastric cancer(GC).However,the molecular role of lncRNAs in GC progression remains unclear.AIM To investigate the differential expression of lncRNAs in human GC and elucidate the function and regulatory mechanism of LINC02407.METHODS The Cancer Genome Atlas database was used to investigate the involvement of lncRNAs in GC.Quantitative real-time polymerase chain reaction was used to estimate the relative expression level of LINC02407 in GC tissues and cells.Functional experiments including CCK8 assay,apoptosis assay,wound healing assay,and transwell assay were used to investigate the effect of LINC02407 on GC cells.Some microRNAs were predicted and verified via bioinformatics analysis and the luciferase reporter system.Predictive analysis and Western blot assay were used to analyze the expression of related proteins.RESULTS Many differentially expressed lncRNAs were identified in GC,and some of them including LINC02407 can affect the survival.LINC02407 was upregulated in tumor tissues compared with adjacent tissues.HGC-27 cells showed the highest LINC02407 expression and HaCaT cells exhibited the lowest expression.Different experiment groups were constructed using LINC02407 overexpressing plasmids and related siRNAs.The results of functional experiments showed that LINC02407 can promote the proliferation,migration,and invasion of GC cells but inhibit apoptosis.Luciferase reporter assay showed that hsa-miR-6845-5p and hsa-miR-4455 was downstream regulated by LINC02407.Western blot analysis showed that adhesion G protein-coupled receptor D1(ADGRD1)was regulated by the LINC02407-miR-6845-5p/miR-4455-ADGRD1 pathways.CONCLUSION LINC02407 plays a role in GC through the LINC02407-miR-6845-5p/miR-4455-ADGRD1 pathways,and thus,it may be an important oncogene and has potential value in GC diagnosis and treatment.展开更多
文摘All tissues in the body are subjected externally to gravity and internally by collagenfibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis.Mechanotransduction involves mechanical work(force through a distance)and energy storage as kinetic and potential energy.This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components.It involves the application of energy directly to cells through integrin-mediated processes,cell-cell connections,stretching of the cell cytoplasm,and activation of the cell nucleus via yes-associated protein(YAP)and transcriptional coactivator with PDZ-motif(TAZ).These processes involve numerous complexes,intermediate molecules,and multiple pathways.Several pathways have been identified from research studies on vertebrate cell culture and from studies in invertebrates.These pathways involve mechanosensors and other molecules that activate the pathways.This review discusses the mitogen-activated protein kinase(MAPK)family,Hippo,Hedgehog,and Wingless-related integration site(WNT)/βcatenin signaling pathways.The mediators covered includeβcatenin,ion channels,growth factors,hormone receptors,members of the Ras superfamily,and components of the linker of nucleoskeleton and cytoskeleton(LINC)complex.However,the interrelationship among the different pathways remains to be clarified.Integrin-mediated mechanotransduction involves direct tensile loading and energy applied to the cell membrane via collagenfibril stretching.This energy is transferred between cells by stretching the cell-cell connections involving cadherins and the WNT/βcatenin pathway.These alterations induce changes in intracellular events in the cytoskeleton and nuclear skeleton caused by the release of YAP and TAZ.These coactivators then penetrate through the nuclear pores and influence nuclear cell function.Alteration in the balance of forces and energy applied to cells and tissues is hypothesized to shift the cell-extracellular matrix mechanical equilibrium by modifying mechanotransduction.The shift in equilibrium can lead to either tissue synthesis,genetic modifications,or promotefibrotic diseases,including epithelial cell-derived cancers,depending on the local metabolic conditions.
基金Supported by the Science and Technology Department of Jilin Province,No.20160101028JCthe Special Funds of Provincial Strategic Adjustment of Economic Structure to Guide in Jilin Province,No.2014G074
文摘BACKGROUND Long noncoding RNAs(lncRNAs)have been identified to play important roles in the development and progression of various tumors,including gastric cancer(GC).However,the molecular role of lncRNAs in GC progression remains unclear.AIM To investigate the differential expression of lncRNAs in human GC and elucidate the function and regulatory mechanism of LINC02407.METHODS The Cancer Genome Atlas database was used to investigate the involvement of lncRNAs in GC.Quantitative real-time polymerase chain reaction was used to estimate the relative expression level of LINC02407 in GC tissues and cells.Functional experiments including CCK8 assay,apoptosis assay,wound healing assay,and transwell assay were used to investigate the effect of LINC02407 on GC cells.Some microRNAs were predicted and verified via bioinformatics analysis and the luciferase reporter system.Predictive analysis and Western blot assay were used to analyze the expression of related proteins.RESULTS Many differentially expressed lncRNAs were identified in GC,and some of them including LINC02407 can affect the survival.LINC02407 was upregulated in tumor tissues compared with adjacent tissues.HGC-27 cells showed the highest LINC02407 expression and HaCaT cells exhibited the lowest expression.Different experiment groups were constructed using LINC02407 overexpressing plasmids and related siRNAs.The results of functional experiments showed that LINC02407 can promote the proliferation,migration,and invasion of GC cells but inhibit apoptosis.Luciferase reporter assay showed that hsa-miR-6845-5p and hsa-miR-4455 was downstream regulated by LINC02407.Western blot analysis showed that adhesion G protein-coupled receptor D1(ADGRD1)was regulated by the LINC02407-miR-6845-5p/miR-4455-ADGRD1 pathways.CONCLUSION LINC02407 plays a role in GC through the LINC02407-miR-6845-5p/miR-4455-ADGRD1 pathways,and thus,it may be an important oncogene and has potential value in GC diagnosis and treatment.
文摘目的研究长链非编码RNA(long non-coding RNA,LncRNA)LINC01137在非小细胞肺癌(nonsmall cell lung cancer,NSCLC)免疫逃逸中的生物学功能及其潜在的调节机制。方法采集24例健康志愿者和24例NSCLC患者血液样本,并收集NSCLC肿瘤组织和癌旁组织检测LINC01137水平。利用Starbase数据库预测LINC01137与miR-22-3p的结合位点,荧光素酶报告基因分析进行验证。采用A549细胞来源的外泌体和/或sh-LINC01137干扰序列转染A549细胞,检测细胞增殖和侵袭能力;收集转染后的细胞上清液培养CD8^(+)T细胞,检测CD8^(+)T细胞耗竭标志物干扰素-γ(interfereron-γ,IFN-γ)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、颗粒霉素B(granzyme B)和白细胞介素-2(interleukin-2,IL-2)水平,以及PD-1+Tim3^(+)CD8^(+)T细胞百分比。采用外泌体和/或miR-22-3p模拟物(miR-22-3p mimic)转染CD8^(+)T细胞,检测PD-1蛋白水平。结果与癌旁组织相比,NSCLC肿瘤组织中LINC01137表达(3.357±0.548 vs 1.011±0.371)明显升高;与健康志愿者相比,NSCLC患者外周血LINC01137表达(3.216±0.342 vs 1.007±0.313)亦明显升高,差异具有统计学意义(t=-17.367,-17.147,均P<0.001)。肿瘤组织LINC01137表达与外周血中LINC01137表达呈正相关(r=0.755,P<0.05)。在A549细胞来源的外泌体中LINC01137显著富集。与Exo+sh-NC组相比,Exo+sh-LINC01137组细胞活力(65.852%±4.715%vs 100.153%±11.934%)及细胞侵袭(21.464%±3.481%vs 43.126%±1.447%)能力显著降低,差异具有统计学意义(t=4.630,9.953,均P<0.01)。NSCLC患者外周血中LINC01137表达和CD8^(+)T细胞百分比呈负相关(r=-0.520,P<0.05)。与Exo+sh-NC组相比,Exo+sh-LINC01137组IFN-γ(3865.314±543.852 pg/ml vs 1786.971±105.982 pg/ml),TNF-α(4631.930±510.715pg/ml vs 1973.242±379.623pg/ml),Granzyme B(3876.496±312.438pg/ml vs 1879.439±287.584pg/ml)和IL-2 mRNA水平(3.286±0.437 vs 1.015±0.314)升高,PD-1+Tim3^(+)CD8^(+)T细胞百分比(7.680%±2.185%vs 18.952%±3.216%)降低,差异具有统计学意义(t=-6.497,-7.237,-8.146,-7.310,5.021,均P<0.01)。miR-22-3p是LINC01137的靶基因。与Exo+NC mimic组相比,Exo+miR-22-3p组PD-1蛋白水平(0.384±0.087 vs 1.003±0.147)显著降低,差异有统计学意义(t=6.277,P<0.01)。结论NSCLC患者肿瘤组织及外周血中LINC01137表达显著上调;NSCLC细胞来源的外泌体中LINC01137通过靶向CD8^(+)T细胞中miR-22-3p并抑制其表达,诱导CD8^(+)T细胞耗竭,促进NSCLC细胞免疫逃逸。