The Beurling-Ahlfors’ extension is studied under relatively general conditions and its dilatation fonction is estimated. Particularly, the classic Deurling -Ahlfors’ theorem can be obtained under the M-condition.
In this paper, we study the boundary dilatation of quasiconformal mappings in the unit disc. By using Strebel mapping by heights theory we show that a degenerating Hamilton sequence is determined by a quasisymmetric f...In this paper, we study the boundary dilatation of quasiconformal mappings in the unit disc. By using Strebel mapping by heights theory we show that a degenerating Hamilton sequence is determined by a quasisymmetric function.展开更多
设h(x)是实轴上的保向同胚,满足h(±∞)=±∞.当h(x)的拟对称函数(,)()()()()x th x t h xρ=h x+?h?x?t(x∈R,t>0)被递减函数ρ(t)所控制时,h(x)的Beurling-Ahlfors扩张的伸缩商D(z)具有下述估计:21 1D≤ρ?+ρ??2,其中()2...设h(x)是实轴上的保向同胚,满足h(±∞)=±∞.当h(x)的拟对称函数(,)()()()()x th x t h xρ=h x+?h?x?t(x∈R,t>0)被递减函数ρ(t)所控制时,h(x)的Beurling-Ahlfors扩张的伸缩商D(z)具有下述估计:21 1D≤ρ?+ρ??2,其中()2ρ?=ρy.展开更多
文摘The Beurling-Ahlfors’ extension is studied under relatively general conditions and its dilatation fonction is estimated. Particularly, the classic Deurling -Ahlfors’ theorem can be obtained under the M-condition.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10171003 and 10231040) and the Doctoral Education Program Foundation of China
文摘In this paper, we study the boundary dilatation of quasiconformal mappings in the unit disc. By using Strebel mapping by heights theory we show that a degenerating Hamilton sequence is determined by a quasisymmetric function.
文摘设h(x)是实轴上的保向同胚,满足h(±∞)=±∞.当h(x)的拟对称函数(,)()()()()x th x t h xρ=h x+?h?x?t(x∈R,t>0)被递减函数ρ(t)所控制时,h(x)的Beurling-Ahlfors扩张的伸缩商D(z)具有下述估计:21 1D≤ρ?+ρ??2,其中()2ρ?=ρy.