期刊文献+
共找到19,337篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries
1
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 lithium iron phosphate battery Safety valve Thermal runaway Gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Tuning the solubility of polysulfides for constructing practical lithium-sulfur battery
2
作者 Jiapeng Li Jianlong Cong +3 位作者 Haijin Ji Ting Shi Lixia Yuan Yunhui Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期611-617,I0013,共8页
Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)ca... Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries. 展开更多
关键词 Li-S batteries lithium polysulfides SOLUBILITY Shuttle effect Interface Se doping
下载PDF
In Situ Polymer Gel Electrolyte in Boosting Scalable Fibre Lithium Battery Applications
3
作者 Jie Luo Qichong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期170-173,共4页
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a... The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future. 展开更多
关键词 High-performance fibre lithium batteries Gel electrolytes Channel structures Stable interface Scalable application
下载PDF
Lithium-Metal Free Sulfur Battery Based on Waste Biomass Anode and Nano-Sized Li_(2)S Cathode
4
作者 Pejman Salimi Eleonora Venezia +6 位作者 Somayeh Taghavi Sebastiano Tieuli Lorenzo Carbone Mirko Prato Michela Signoretto Jianfeng Qiu Remo Proietti Zaccaria 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期39-47,共9页
The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a c... The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level. 展开更多
关键词 biochars ether-based electrolytes lithium sulfide lithium-metal free batteries superior cycling stability
下载PDF
Thin polymer electrolyte with MXene functional layer for uniform Li^(+) deposition in all-solid-state lithium battery
5
作者 Weijie Kou Yafang Zhang +3 位作者 Wenjia Wu Zibiao Guo Quanxian Hua Jingtao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期71-80,共10页
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ... Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery. 展开更多
关键词 MXene nanosheet Laminar functional layer Thin polymer electrolyte Dendrite-free Liþdeposition All-solid-state lithium battery
下载PDF
Viability of all-solid-state lithium metal battery coupled with oxide solid-state electrolyte and high-capacity cathode
6
作者 Xingxing Jiao Xieyu Xu +6 位作者 Yongjing Wang Xuyang Wang Yaqi Chen Shizhao Xiong Weiqing Yang Zhongxiao Song Yangyang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期122-131,共10页
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a... Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety. 展开更多
关键词 All-solid-state lithium metal battery LiNi_(0.5C)o_(0.2)Mn_(0.3)O_(2)-Li7La_(3)Zr_(2)O_(12)composite cathode CO-SINTERING lithium metal anode Electro-chemo-mechanical failure
下载PDF
Modification of Li Anode with Perfluorodecyltrimethoxysilane to Enhance the Performance of Lithium Metal Battery
7
作者 Yinghan Shao 《Journal of Power and Energy Engineering》 2024年第8期70-77,共8页
The solid electrolyte interphase (SEI) on the surface of lithium metal anodes can dictate the electrochemical performance of lithium-metal-based batteries. Due to ineffective adhesion, the natural SEI layer may detach... The solid electrolyte interphase (SEI) on the surface of lithium metal anodes can dictate the electrochemical performance of lithium-metal-based batteries. Due to ineffective adhesion, the natural SEI layer may detach from the lithium negative electrode during interface fluctuations, thereby deteriorating the electrochemical performance of lithium-metal-based batteries. This work introduces perfluorosiloxane coupling agents as interfacial adhesion promoters, chemically bonding and physically entangling the lithium metal with the SEI via the formation of Li-O-Si bonds with the inorganic reactive groups anchoring to the Li substrate and the organic functional groups participating in the formation of the SEI layer, thus binding with its components. Lithium metal batteries modified with silane coupling agents exhibit superior electrochemical performance compared to unmodified lithium metal batteries. The modified lithium metal battery retains a specific capacity of 162 mAh/g after 200 cycles, while the unmodified lithium metal battery only retains 140 mAh/g. 展开更多
关键词 lithium Metal battery SEI High Density PFDTMS Surface
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
8
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-Ion Batteries battery Construction battery Characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
A Nonlinear Observer Approach of SOC Estimation Based on Hysteresis Model for Lithium-ion Battery 被引量:8
9
作者 Yan Ma Bingsi Li +2 位作者 Guangyuan Li Jixing Zhang Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期195-204,共10页
In this paper, a state of charge U+0028 SOC U+0029 estimation approach for lithium-ion battery based on equivalent circuit model and the input-to-state stability U+0028 ISS U+0029 theory has been proposed. According t... In this paper, a state of charge U+0028 SOC U+0029 estimation approach for lithium-ion battery based on equivalent circuit model and the input-to-state stability U+0028 ISS U+0029 theory has been proposed. According to the electrochemical performance of lithiumion battery, the equivalent circuit model with two RC networks is established, which includes hysteresis characteristic in inner electrochemical response process. The nonlinear relation between open circuit voltage U+0028 OCV U+0029 and SOC is obtained from a rapid test. Exponential fitting method is used to identify the parameters of the model. A novel state observer based on ISS theory is designed for lithium-ion battery SOC estimation. The designed observer is tested on AMESim and Simulink co-simulation. The simulation results show that the proposed method has a high SOC estimation accuracy with an error of about 2 percent. © 2017 Chinese Association of Automation. 展开更多
关键词 battery management systems Charging (batteries) Circuit simulation Circuit theory Electric batteries Equivalent circuits HYSTERESIS Hysteresis loops IONS lithium lithium alloys Open circuit voltage Secondary batteries
下载PDF
Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages 被引量:14
10
作者 Kai-lin Cheng Dao-bin Mu +3 位作者 Bo-rong Wu Lei Wang Ying Jiang Rui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第3期342-351,共10页
A spherical-like Ni0.6Co0.2Mn0.2(OH)2precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure,... A spherical-like Ni0.6Co0.2Mn0.2(OH)2precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge–discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2material obtained by calcination at 900°C displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh•g−1at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh•g−1at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh•g−1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 CALCINATION Cathodes Cobalt Crystal structure Cyclic voltammetry Electric batteries Electric discharges Electrochemical properties Electrodes Ions lithium lithium alloys lithium compounds Manganese NICKEL Particle size Particle size analysis Scanning electron microscopy Secondary batteries X ray diffraction
下载PDF
Postmortem ^(7)Li NMR analysis for assessing the reversibility of lithium metal electrodes in lithium metal batteries
11
作者 Jaewon Baek Sunha Kim +1 位作者 Hee-Tak Kim Oc Hee Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期430-440,共11页
Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,... Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs. 展开更多
关键词 NMR spectroscopy lithium-7 lithium metal battery Electrolyte Electrode-protective layer Solid electrolyte interface Magnetic susceptibility anisotropy lithium-metal NMR signal Diamagnetic^(7)Li NMR signal
下载PDF
Review on current development of polybenzimidazole membrane for lithium battery
12
作者 Yonggui Deng Arshad Hussain +3 位作者 Waseem Raza Xingke Cai Dongqing Liu Jun Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期579-608,共30页
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k... With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology. 展开更多
关键词 lithium batteries SEPARATORS Porous separators Polybenzimidazole Membrane
下载PDF
Lithium ion battery cathode material LiNi_yCo_zMn_(1-y-z)O_2
13
作者 LI Nai jun(李乃军) 1, ZHAI Xiu jing(翟秀静) 2, TIAN Yan wen(田彦文) 2 1. Teachers College, Shenyang University, Shenyang 110015, P.R.China 2. College of Material and Metallurgy, Northeastern University, Shenyang 110006, P.R.China 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期386-388,共3页
A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and s... A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and specific surface area, were discussed. The characteristic of charge and discharge, reversible specific capacity and cycle property were also studied. The relationship between the structure and properties of the composite oxides was explored. The results show that the composite oxide with a reasonable composition is beneficial to the improvement and enhancement of the properties. 展开更多
关键词 lithium ION BATTERIES cathodic material LiNi Y Mn 1- y-z O 2 LiNiO 2
下载PDF
Fractional Modeling and SOC Estimation of Lithium-ion Battery 被引量:2
14
作者 Yan Ma Xiuwen Zhou +1 位作者 Bingsi Li Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期281-287,共7页
This paper proposes a state of charge (SOC) estimator of Lithium-ion battery based on a fractional order impedance spectra model. Firstly, a battery fractional order impedance model is derived on the grounds of the ch... This paper proposes a state of charge (SOC) estimator of Lithium-ion battery based on a fractional order impedance spectra model. Firstly, a battery fractional order impedance model is derived on the grounds of the characteristics of Warburg element and constant phase element (CPE) over a wide range of frequency domain. Secondly, a frequency fitting method and parameter identification algorithm based on output error are presented to identify parameters of the fractional order model of Lithium-ion battery. Finally, the fractional order Kalman filter approach is introduced to estimate the SOC of the lithium-ion battery based on the fractional order model. The simulation results show that the fractional-order model can ensure an acceptable accuracy of the SOC estimation, and the error of estimation reaches maximally up to 0.5% SOC. © 2014 Chinese Association of Automation. 展开更多
关键词 Algorithms battery management systems Charging (batteries) Electric batteries Frequency domain analysis IONS Kalman filters lithium lithium alloys Secondary batteries Solid solutions
下载PDF
An Effective Mixing for Lithium Ion Battery Slurries 被引量:9
15
作者 Darjen Liu Li-Chun Chen +3 位作者 Ta-Jo Liu Tan Fan Erh-Yeh Tsou Carlos Tiu 《Advances in Chemical Engineering and Science》 2014年第4期515-528,共14页
Coating slurries for making anodes and cathodes of lithium batteries contain a large percentage of solid particles of different chemicals, sizes and shapes in highly viscous media. A thorough mixing of these slurries ... Coating slurries for making anodes and cathodes of lithium batteries contain a large percentage of solid particles of different chemicals, sizes and shapes in highly viscous media. A thorough mixing of these slurries poses a major challenge in the battery manufacturing process. Several types of mixing devices and mixing methods were examined. The conventional turbine stirrers or ball mill mixers could be adequately used for the preparation of anode slurries, but not suitable for cathode slurries. In this study, a newly three-dimensional mixer, in conjunction with a multi-stage mixing sequence was proposed. The mixing effectiveness was examined by means of rheological measurements and flow visualization techniques. Preliminary electrical performance results indicated that the battery obtained using the 3D mixing device with a multi-stage mixing sequence was more efficient to those obtained from conventional methods. 展开更多
关键词 lithium Ion battery Electrode SLURRIES Three-Dimensional MIXER Flow Visualization battery Performance RHEOLOGY
下载PDF
Three-in-one fire-retardant poly(phosphate)-based fast ion-conductor for all-solid-state lithium batteries 被引量:2
16
作者 Jiaying Xie Sibo Qiao +5 位作者 Yuyang Wang Jiefei Sui Lixia Bao He Zhou Tianshi Li Jiliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期324-334,I0008,共12页
The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes ... The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries. 展开更多
关键词 Three-in-one Poly(phosphate) Organic fast ion-conductor Solid-state polymer electrolyte Flame-retardant Secondary lithium batteries
下载PDF
Effect of the anionic composition of sulfolane based electrolytes on the performances of lithium-sulfur batteries
17
作者 Elena V.Karaseva Elena V.Kuzmina +2 位作者 Bo-Quan Li Qiang Zhang Vladimir S.Kolosnitsyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期231-240,I0005,共11页
In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,... In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes. 展开更多
关键词 Donor number lithium salt SULFOLANE lithium polysulfide ELECTROLYTE lithium-sulfur battery lithium metal electrode
下载PDF
Fundamentals,recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems 被引量:2
18
作者 Maitri Patel Kuldeep Mishra +3 位作者 Ranjita Banerjee Jigar Chaudhari D.K.Kanchan Deepak Kumar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期221-259,I0007,共40页
The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamental... The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way. 展开更多
关键词 Conventional rechargeable batteries Li-ion batteries Li-S batteries Li-air battery Other than lithium batteries Alternate battery systems
下载PDF
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
19
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithium‐ion batteries molecular interactions polymeric binders selfhealability Si anodes
下载PDF
Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery 被引量:5
20
作者 Tianqi Jia Geng Zhong +8 位作者 Yao Lv Nanrui Li Yanru Liu Xiaoliang Yu Jinshuo Zou Zhen Chen Lele Peng Feiyu Kang Yidan Cao 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1325-1340,共16页
Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advan... Green energy storage devices play vital roles in reducing fossil fuel emissions and achieving carbon neutrality by 2050.Growing markets for portable electronics and electric vehicles create tremendous demand for advanced lithium-ion batteries(LIBs)with high power and energy density,and novel electrode material with high capacity and energy density is one of the keys to next-generation LIBs.Silicon-based materials,with high specific capacity,abundant natural resources,high-level safety and environmental friendliness,are quite promising alternative anode materials.However,significant volume expansion and redundant side reactions with electrolytes lead to active lithium loss and decreased coulombic efficiency(CE)of silicon-based material,which hinders the commercial application of silicon-based anode.Prelithiation,preembedding extra lithium ions in the electrodes,is a promising approach to replenish the lithium loss during cycling.Recent progress on prelithiation strategies for silicon-based anode,including electrochemical method,chemical method,direct contact method,and active material method,and their practical potentials are reviewed and prospected here.The development of advanced Si-based material and prelithiation technologies is expected to provide promising approaches for the large-scale application of silicon-based materials. 展开更多
关键词 Si-based materials Prelithiation Coulombic efficiency lithium loss lithium-ion battery
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部