期刊文献+
共找到64,161篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of cold rolling path on recrystallization behavior and mechanical properties of pure copper during annealing
1
作者 Jing CHEN Wen-jie XU +8 位作者 Jia-hao YANG Zhi YANG Hong-li SHI Gao-yong LIN Zhu-min LI Xu SHEN Bo JIANG Hui-qun LIU Kai-xuan GUI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3233-3250,共18页
The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,an... The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing. 展开更多
关键词 rolling path grain boundary characteristic distribution pure copper mechanical properties
下载PDF
Microstructural Development of Fe-20mass%Cr Alloys and Pure Copper Processed by Equal-Channel Angular Pressing
2
作者 Muhammad Rifai Ryosuke Haga +1 位作者 Hiroyuki Miyamoto Hiroshi Fujiwara 《Materials Sciences and Applications》 2013年第4期250-257,共8页
Microstructural development of ultra low C, N, Fe-Cr alloy and pure copper processed by equal-channel angular pressing (ECAP) have been examined focusing on the initial stage of the formation of ultrafine grain struct... Microstructural development of ultra low C, N, Fe-Cr alloy and pure copper processed by equal-channel angular pressing (ECAP) have been examined focusing on the initial stage of the formation of ultrafine grain structure. Fe-Cr alloys were pressed at 423 K while pure copper at room temperature for 1 to 3 passes via the route Bc to compare at the equivalent homologous temperature. Microstructural evolutions were characterized by electron backscatter diffraction (EBSD) image and transmission electron microscopy (TEM). It was found that deformation structures were mostly deformation-induced subboundaries in both the materials after one pass, but the fraction of high-angle grain boundary became higher in the Fe-Cr alloys than in pure copper in subsequent passes by increasing misorientation of the boundaries. The more enhanced formation of high angle boundaries in Fe-Cr alloys was discussed in terms of the nature of crystal slip of FCC and BCC structures. 展开更多
关键词 EBSD copper Ferritic STAINLESS Steel Equal-Channel ANGULAR Processing (ECAP) GRAIN Boundaries
下载PDF
Effect of vacuum on porosity and mechanical properties of high-pressure die-cast pure copper 被引量:1
3
作者 Hong-mei Yang Zhi-peng Guo +3 位作者 Hua-zhong Yang Zhi-hua Fu Zhou-meng Pu Shou-mei Xiong 《China Foundry》 SCIE 2019年第4期232-237,共6页
Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning el... Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray computed tomography(XCT) and tensile tester. Results show that porosities including gas porosity and shrinkage porosity could be observed in copper castings. Since the application of vacuum could reduce filling related gas entrapment and facilitate solidification due to the increased heat transfer between metal and die, both number and size of the entrapped gases, as well as shrinkage porosities were significantly reduced in vacuum-assist die castings of pure copper. The porosity fraction decreased from 2.243% to 0.875% compared with that of the conventional die casting. Besides, mechanical properties were improved significantly, i.e., by 15% for ultimate tensile strength and three times for elongation. 展开更多
关键词 VACUUM copper high pressure DIE CASTING (HPDC) MECHANICAL properties POROSITY
下载PDF
Work hardening of adhesively bonded pure copper single lap joints 被引量:1
4
作者 郑小玲 熊惟皓 +3 位作者 郑勇 余海洲 游敏 刘文俊 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期365-368,共4页
To explain the reason why work hardening occurs in epoxy adhesive bonded zone of pure copper adherends after tensile shear strength testing, an elasto-plastic finite element model was established to analyze the effect... To explain the reason why work hardening occurs in epoxy adhesive bonded zone of pure copper adherends after tensile shear strength testing, an elasto-plastic finite element model was established to analyze the effect of different adherends thickness of 2mm and 4mm on the shear strength as well as the level of work hardening in copper adherends of single lap joint. The numerical simulation results show that the axial or equivalent stress overrun the yield strength of the pure copper adherend is the main reason why the work hardening occurs on the bonded zone of the adherends after the shear strength testing. The elasto-plastic finite element simulation results are agreed with the experimental ones. The thicker its adherends are, the more serious the work hardening is. 展开更多
关键词 EPOXY pure copper LAP-SHEAR WORK HARDENING numerical simulation
下载PDF
Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion 被引量:2
5
作者 唐超兰 李豪 李赛毅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1736-1744,共9页
An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each... An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials. 展开更多
关键词 pure copper equal channel angular extrusion severe plastic deformation strain path grain refinement
下载PDF
Effects of microrolling parameters on the microstructure and deformation behavior of pure copper 被引量:1
6
作者 Yi Jing Hong-mei Zhang +3 位作者 Hao Wu Lian-jie Li Hong-bin Jia Zheng-yi Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期45-52,共8页
Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking... Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimen- tal results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 lam and the reduction level was less than 60%. 展开更多
关键词 micro-rolling grain size effect REDUCTION deformation behavior MICROSTRUCTURE pure copper
下载PDF
Primary-transient creep and anelastic backflow of pure copper deformed at low temperatures and ultra-low strain rates
7
作者 申俊杰 Ken-ichi IKEDA +1 位作者 Satoshi HATA Hideharu NAKASHIMA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1729-1735,共7页
Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 b... Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations. 展开更多
关键词 pure copper CREEP DISLOCATION ANELASTICITY constitutive creep equation
下载PDF
Effects of rare earth Ce addition on microstructure and mechanical properties of impure copper containing Pb 被引量:11
8
作者 Hai-hong LI Xiao LIU +5 位作者 Yang LI Shi-hong ZHANG Yan CHEN Song-wei WANG Jin-song LIU Jin-hu WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1574-1581,共8页
The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 ... The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 particles form after Ce addition.CePb3 particles,with average size of^3.6μm,homogenously distribute in the Cu matrix.Due to small lattice misfit(~4.62%)with Cu matrix,CePb3 particles can act as effective nucleation sites beneficial to the grain refinement.Pb at grain boundaries seriously deteriorates the mechanical properties of Cu.The tensile strength and the elongation of Cu-0.1 Pb are decreased by 43.1%and 56.7%compared with those of pure copper,respectively.Ce can purify grain boundaries,cause the precipitation of CePb3 particles and refine grain sizes,which contribute to significant improvement of the mechanical properties of Cu.Compared with Cu-0.1Pb,the tensile strength(179 MPa)and the elongation(38.5%)of Cu-0.1Pb-0.3Ce are increased by 117.6%and 151.6%,respectively. 展开更多
关键词 Ce addition impure copper containing Pb CePb3 second phase particle lattice misfit grain refinement mechanical property
下载PDF
Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion
9
作者 Mohamed S. El Naschie 《International Journal of Astronomy and Astrophysics》 2014年第2期332-339,共8页
Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 k... Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method. 展开更多
关键词 General RELATIVITY COSSERAT Micro-Polar Space Dark Energy Teleparellelism Wittens M-THEORY De Sitter SPACETIME Killing-Yano Tensor Einstein-Cartan RELATIVITY pure GRAVITY Kaluza-Klein Theory Nonlocal Elasticity 't Hooft-Veltman Renormalization
下载PDF
Microstructure and mechanical properties of laser welded joints of pure copper and 304 stainless steels 被引量:1
10
作者 王刚 吴林志 +1 位作者 黄建茌 冯吉才 《China Welding》 EI CAS 2014年第3期69-72,共4页
A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the coppe... A continuous wave diode laser with an output power of 2.8 kW was used to join pure copper and 304 stainless steel with a thickness of 1 mm. The focused laser beam with a diameter of O. 8 mm was irradiated on the copper side of the butt joints. In process of laser welding, effects of processing primary parameters on tensile strength of the joints were investigated. The interfacial characterizations of the joints were investigated by metallographic microscope, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS). The results showed that the element diffusion and solution occur and metallurgical bonding was achieved between pure copper and 304 stainless steel. The maximum tensile strength of the joints was 209 MPa when the laser power of welding was 2. 4 kW and welding speed was 12 mm/s. 展开更多
关键词 laser welding MICROSTRUCTURE PROPERTIES pure copper 304 stainless steel
下载PDF
Inhomogeneity and anisotropy of microstructure and mechanical properties in severe plastic deformation processed pure copper 被引量:1
11
作者 康锋 王经涛 杜忠泽 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期160-165,共6页
关键词
下载PDF
Fabrication of pure copper rods containing continuous columnar crystals by continuous unidirectional solidification technology 被引量:9
12
作者 Hong zhang Jianxin Xie Zidong Wang Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2004年第3期240-244,共5页
Pure copper rods containing continuous columnar crystals were fabricatedusing the downward CUS (Continuous Unidirectional Solidification) equipment. When the technologicalparameters were set as the ranges of mould tem... Pure copper rods containing continuous columnar crystals were fabricatedusing the downward CUS (Continuous Unidirectional Solidification) equipment. When the technologicalparameters were set as the ranges of mould temperature 1100-1300℃, cooling distance (the distancefrom the exit of the cast mould to the start point of cooling) 10-20 mm, casting speed 0.2-2.5 mm/s,cooling water (20-25℃) volume 1000-1320 L/h, and when these parameters matched reasonably, the CUSprocess was performed stably, and pure copper rods containing continuous columnar crystals withbright and smooth surface were produced. The dendritic arm spacing of the crystals in copper rodsdecreased with increasing the casting speed. The results of the texture by X-ray diffractionanalysis showed that the rods has strong <100> fiber texture. 展开更多
关键词 copper continuous unidirectional solidification mould temperature castingspeed microstructure TEXTURE
下载PDF
Improvements in the microstructure and fatigue behavior of pure copper using equal channel angular extrusion 被引量:1
13
作者 J.Nemati G.H.Majzoobi +2 位作者 S.Sulaiman B.T.H.T.Baharudin M.A.Azmah Hanim 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期569-576,共8页
In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applie... In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applied stresses using fatigue tests, fractography, and metallography. The mechanical properties of the extruded material were obtained at a tensile test velocity of 0.5 mm/min. It was found that the maximum increase in strength occurred after the 2nd pass. The total increase in ultimate strength after eight passes was 94%. The results of fatigue tests indicated that a significant improvement in fatigue life occurred after the 2nd pass. In subsequent passes, the fatigue life con-tinued to improve but at a considerably lower rate. The improved fatigue life was dependent on the number of passes and applied stresses. For low stresses (or high-cycle fatigue), a maximum increase in fatigue resistance of approximately 500%was observed for the extruded material after eight passes, whereas a maximum fatigue resistance of 5000%was obtained for high-applied stresses (or low-cycle fatigue). Optical microscopic examinations revealed grain refinements in the range of 32 to 4 μm. A maximum increase in impact energy absorption of 100%was achieved after eight passes. Consistent results were obtained from fractography and metallography examinations of the ex-truded material during fatigue tests. 展开更多
关键词 copper equal channel angular extrusion fatigue of materials grain size grain refinement fracture toughness
下载PDF
Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper 被引量:4
14
作者 黄树海 舒大禹 +1 位作者 胡传凯 朱世凤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1044-1054,共11页
The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystalli... The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystallization critical stress, saturated stress, dynamic recovery volume fraction and dynamic recrystallization volume fraction were determined. According to the processing map, the instability regions occur in regions of 400?450 °C, 0.001?0.05 s?1 and 450?750 °C, 0.05?1 s?1. The deformation mechanism in the stability region is dynamic recrystallization. The flow stress was predicted. The results also show that the true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results. 展开更多
关键词 copper hot compression deformation strain hardening strain softening
下载PDF
Effect of pulse magnetic field on solidification structure and properties of pure copper 被引量:7
15
作者 LIAO Xi-liang GONG Yong-yong +2 位作者 LI Ren-xing CHEN Wen-jie ZHAI Qi-jie 《China Foundry》 SCIE CAS 2007年第2期116-119,共4页
The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification struct... The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure, mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage. Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover, in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper. 展开更多
关键词 pure copper pulse magnetic field solidification structure PROPERTY
下载PDF
Application of rare-earth element Y in refining impure copper 被引量:2
16
作者 Hai-hong Li Xue-qin Sun +2 位作者 Shang-zhou Zhang Qin-yi Zhao Guang-zhen Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第5期453-459,共7页
The effects of rare-earth element Y in refining impure copper were investigated in this paper. The composition, microstructures, and corrosion resistance properties of impure copper before and after refinement with Y ... The effects of rare-earth element Y in refining impure copper were investigated in this paper. The composition, microstructures, and corrosion resistance properties of impure copper before and after refinement with Y were investigated using direct-reading spectrometry, inductively coupled plasma atomic emission spectrometry, optical microscopy, scanning electron microscopy, and potentiodynamic polariza- tion measurements. The results show that the concentrations of impurities S, As, Sb, Bi, A1, Cd, and Se are remarkably decreased. Adding an appropriate amount of Y refines the microstructure and enhances the corrosion resistance properties of impure copper in HC1 solution via a purification effect. The formation enthalpies of compounds formed between Y and various impurity elements were calculated on the basis of Miedema's theory. The thermodynamic mechanisms of the refinement of impure copper by Y were also discussed. 展开更多
关键词 copper refining yttrium addition impurities removal microstructure corrosion resistance
下载PDF
Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000 被引量:8
17
作者 Mukuna P.MUBIAYI Esther T.AKINLABI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1852-1862,共11页
Friction stir spot welding technique was employed to join pure copper (C11000) and pure aluminium (AA1060) sheets. The evolving properties of the welds produced were characterized. The spot welds were produced by ... Friction stir spot welding technique was employed to join pure copper (C11000) and pure aluminium (AA1060) sheets. The evolving properties of the welds produced were characterized. The spot welds were produced by varying the rotational speed, shoulder plunge depth using different tool geometries. The presence of a copper ring of different lengths was observed on both sides of the welds indicating that Cu extruded upward into the Al sheet which contributed to obtaining strong welds. The microstructure showed the presence of copper particles in the aluminium matrix which led to the presence of various intermetallics observed by the energy dispersive spectroscopy and X-ray diffraction. The maximum tensile failure load increases with an increase in the shoulder plunge depth, except for the weld produced at 800 r/min using a conical pin and a concave shoulder. A nugget pull-out failure mode occurred in all the friction stir spot welds under the lap-shear loading conditions. High peaks of Vickers microhardness values were obtained in the vicinity of the keyhole of most of the samples which correlated to the presence of intermetallics in the stir zone of the welds. 展开更多
关键词 aluminium copper friction stir spot welding MICROHARDNESS MICROSTRUCTURE
下载PDF
Improving effect of carbonized quantum dots(CQDs)in pure copper matrix composites 被引量:5
18
作者 HUANG Xiao BAO Rui YI Jian-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1255-1265,共11页
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was... Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites. 展开更多
关键词 carbon quantum dots copper matrix mechanical property electrical property interface bonding
下载PDF
A study of metal/die interfacial heat transfer behavior of vacuum die cast pure copper 被引量:2
19
作者 Hong-mei Yang Zhou-meng Pu +2 位作者 Zhi-peng Guo Ang Zhang Shou-mei Xiong 《China Foundry》 SCIE 2020年第3期206-211,共6页
High pressure die casting copper is used to produce rotors for induction motors to improve efficiency.Experiments were carried out for a special"step-shape"casting with different step thicknesses.Based on th... High pressure die casting copper is used to produce rotors for induction motors to improve efficiency.Experiments were carried out for a special"step-shape"casting with different step thicknesses.Based on the measured temperature inside the die,the interfacial heat transfer coefficient(IHTC)at the metal/die interface during vacuum die casting was evaluated by solving the inverse problem.The IHTC peak value was 4.5×10^3-11×10^3 W·m^-2·K^-1 under the basic operation condition.The influences of casting pressure,fast shot speed,pouring temperature and initial die surface temperature on the IHTC peak values were investigated.Results show that a greater casting pressure and faster shot speed could only increase the IHTC peak values at the location close to the ingate.An increase of pouring temperature and/or initial die surface temperature significantly increases the IHTC peak values. 展开更多
关键词 vacuum die casting interfacial heat transfer behavior inverse method copper metal/die interface
下载PDF
Exciting News from Indentations onto Silicon, Copper, and Tungsten
20
作者 Gerd Kaupp 《Journal of Applied Mathematics and Physics》 2023年第12期4042-4078,共37页
Indentations onto crystalline silicon and copper with various indenter geometries, loading forces at room temperature belong to the widest interests in the field, because of the physical detection of structural phase ... Indentations onto crystalline silicon and copper with various indenter geometries, loading forces at room temperature belong to the widest interests in the field, because of the physical detection of structural phase transitions. By using the mathematically deduced F<sub>N</sub>h<sup>3/2 </sup>relation for conical and pyramidal indentations we have a toolbox for deciding between faked and experimental loading curves. Four printed silicon indentation loading curves (labelled with 292 K, 260 K, 240 K and 210 K) proved to be faked and not experimental. This is problematic for the AI (artificial intelligence) that will probably not be able to sort faked data out by itself but must be told to do so. High risks arise, when published faked indentation reports remain unidentified and unreported for the mechanics engineers by reading, or via AI. For example, when AI recommends a faked quality such as “no phase changes” of a technical material that is therefore used, it might break down due to an actually present low force, low transition energy phase-change. This paper thus installed a tool box for the distinction of experimental and faked loading curves of indentations. We found experimental and faked loading curves of the same research group with overall 14 authoring co-workers in three publications where valid and faked ones were next to each other and I can thus only report on the experimental ones. The comparison of Si and Cu with W at 20-fold higher physical hardness shows its enormous influence to the energies of phase transition and of their transition energies. Thus, the commonly preferred ISO14577-ASTM hardness values HISO (these violate the energy law and are simulated!) leads to almost blind characterization and use of mechanically stressed technical materials (e.g. airplanes, windmills, bridges, etc). The reasons are carefully detected and reported to disprove that the coincidence or very close coincidence of all of the published loading curves from 150 K to 298 K are constructed but not experimental. A tool-box for distinction of experimental from faked indentation loading curves (simulations must be indicated) is established in view of protecting the AI from faked data, which it might not be able by itself to sort them out, so that technical materials with wrongly attributed mechanical properties might lead to catastrophic accidents such as all of us know of. There is also the risk that false theories might lead to discourage the design of important research projects or for not getting them granted. This might for example hamper or ill-fame new low temperature indentation projects. The various hints for identifying faked claims are thus presented in great detail. The low-temperature instrumental indentations onto silicon have been faked in two consecutive publications and their reporting in the third one, so that these are not available for the calculation of activation energies. Conversely, the same research group published an indentation loading curve of copper as taken at 150 K that could be tested for its validity with the therefore created tools of validity tests. The physical algebraic calculations provided the epochal detection of two highly exothermic phase transitions of copper that created two polymorphs with negative standard energy content. This is world-wide the second case and the first one far above the 77 K of liquid nitrogen. Its existence poses completely new thoughts for physics chemistry and perhaps techniques but all of them are open and unprepared for our comprehension. The first chemical reactions might be in-situ photolysis and the phase transitions can be calculated from experimental curves. But several further reported low temperature indentation loading curves of silicon were tested for their experimental reality. And the results are compared to new analyses with genuine room temperature results. A lot is to be learned from the differences at room and low temperature. 展开更多
关键词 Phase-Transition-Onset and -Energy Indentation of Silicone copper copper Nanoparticles Tungsten with Polymorphs Low-Temperature Indentations Detection of Faked Loading Curves Protection of AI from False Advices Risk of Catastrophic Crashes Physical Hardness Exothermic copper-Transitions Algebraic Calculations Negative-Standard-Energy Polymorphs
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部