期刊文献+
共找到235,108篇文章
< 1 2 250 >
每页显示 20 50 100
Rotational Friction Damper’s Performance for Controlling Seismic Response of High Speed Railway Bridge-Track System 被引量:3
1
作者 Wei Guo Chen Zeng +3 位作者 Hongye Gou Yao Hu Hengchao Xu Longlong Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期491-515,共25页
CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bri... CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bridge system and CRTS-II track system form a complex nonlinear system.To investigate the seismic response of high speed railway(HSR)simply supported bridge-track system,nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established.By seismic analysis,it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components,such as piers,girders and bearings.The result shows that the inconsistent displacement of bridge girders is the main cause of the CRTS-II track system’s damage.Then the rotational friction damper(RFD)is adopted,which utilizes the device’s rotation and friction to dissipate seismic energy.The hysteretic behavior of RFD is studied by numerical and experimental methods.Results prove that RFD can provide good hysteretic energy dissipation ability with stable performance.Furthermore,the analysis of RFD’s influence on seismic response of HSR bridge-track system shows that RFD with larger sliding force is more effective in controlling excessive inconsistent displacement where RFD is installed,though response of other bridge spans could slightly deteriorated. 展开更多
关键词 ROTATIONAL friction DAMPER high speed railway simply supported bridge-track SYSTEM PIERS of different height CRTS-II TRACK SYSTEM seismic response control
下载PDF
Seismic responses of high concrete face rockfill dams:A case study 被引量:6
2
作者 Sheng-shui Chen Zhong-zhi Fu +1 位作者 Kuang-ming Wei Hua-qiang Han 《Water Science and Engineering》 EI CAS CSCD 2016年第3期195-204,共10页
Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent s... Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed. 展开更多
关键词 Concrete face ROCKFILL DAM (CFRD) seismic response Zipingpu PERMANENT strain Construction joint VISCOELASTIC model Finite element method
下载PDF
Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modeling 被引量:1
3
作者 Yang Jun Yang Min Chen Haibing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期719-733,共15页
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat... In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform. 展开更多
关键词 piled RAFT PILE SPACING soft clay dynamic CENTRIFUGE model test seismic response SUBSIDENCE load sharing bending moment
下载PDF
Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test 被引量:5
4
作者 CAO Li-cong FU Xiao +3 位作者 WANG Zhi-jia ZHOU Yong-yi LIU Fei-cheng ZHANG Jian-jing 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1137-1152,共16页
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement... To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone. 展开更多
关键词 Reinforced soil retaining walls Potentialfailure surface Full-height RIGID FACING STEEL STRIP seismic behaviors 1-g SHAKING table test
下载PDF
Nonlinear seismic response analysis of reinforced concrete tube in tube structure 被引量:1
5
作者 WANG Hai-bo SHEN Pu-sheng 《Journal of Central South University of Technology》 2005年第z1期183-188,共6页
Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given... Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected. 展开更多
关键词 TUBE in TUBE structure of reinforced concrete seismic responses nonlinear analysis multi-vertical-lineelement model multi-spring element PSEUDO-DYNAMIC test
下载PDF
Effect of site amplification on inelastic seismic response 被引量:4
6
作者 Adhikary S Singh Y 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第3期535-554,共20页
The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility ... The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand. 展开更多
关键词 SITE amplifi CATION normalized response SPECTRA eff ective period INELASTIC seismic response INELASTIC SITE amplifi CATION factor
下载PDF
Fully fluid-solid coupling dynamic model for seismic response of underground structures in saturated soils 被引量:6
7
作者 Li Liang Jiao Hongyun +1 位作者 Du Xiuli Shi Peixin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期257-268,共12页
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim... The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure. 展开更多
关键词 UNDERGROUND structure saturated SOIL seismic response fluid-solid COUPLING dynamic model user-defined ELEMENT
下载PDF
Seismic response of high-rise steel framed buildings with Chevron-braced designed according to Venezuelan codes
8
作者 Ronald Ugel Juan Carlos Vielma +2 位作者 Reyes Herrera Sigrit Perez Alex Barbat 《Natural Science》 2012年第8期694-698,共5页
The object of this study is to determine the seismic response of regular high-rise steel buildings with chevron-braced frames. Mechanics models of three buildings of 14, 18 and 20 stories are studied, all of them with... The object of this study is to determine the seismic response of regular high-rise steel buildings with chevron-braced frames. Mechanics models of three buildings of 14, 18 and 20 stories are studied, all of them with similar geometric characteristics in plant and elevation. These models are realized using prescriptions and parameters from venezuelan design codes. The seismic action is carry on through varius synthetic design spectrum compatible accelerograms defined by the seismic codes in this study, with three levels of intensity corresponding to three specific Limit States. Dynamic analysis is used to compute parameters of ductility, over strength and maximum displacements. From these results it can be concluded that chevron-braced frames presented a good overall performance and non V-braced frames show greater damage due to dynamic actions, validating non linear dynamic analysis as a very powerful tool to seismic-resistance design and chevron-braced frames as a very useful choice in improving the response of tall steel structures. since this lateral bracing system is absent from Venezuelan seismic codes. 展开更多
关键词 Framed Steel BUILDINGS CHEVRON Braced FRAMES Non Linear Analysis Over Strength seismic response
下载PDF
The plurality effect of topographical irregularities on site seismic response 被引量:6
9
作者 Saeed Ghaffarpour Jahromi Sama Karkhaneh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第3期521-534,共14页
Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the wave... Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the waves reaching the ground surface. When a seismic motion happens in a topographically irregular area, seismic waves are trapped and refl ected between the topographic features. Therefore, the interaction between topographies can amplify seismic ground response. In order to reveal how interaction between topographies infl uences seismic response, several numerical fi nite element studies have been performed by using the ABAQUS program. The results show that topographic features a greater distance between the seismic source and the site would cause greater seismic motion amplifi cation and is perceptible for the hills far away from the source and the ridges. Also, site acceleration response is impacted by surrounding topography further than site velocity and displacement response. 展开更多
关键词 TOPOGRAPHY eff ECTS surrounding TOPOGRAPHY site seismic response ABAQUS PROGRAM and PLAXIS PROGRAM
下载PDF
Effect of burial depth of a new tunnel on the seismic response of an existing tunnel
10
作者 Ma Runbo Cao Qikun +3 位作者 Lu Shasha Zhao Dongxu Zhang Yanan Xu Hong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期863-882,共20页
Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the... Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the seismic response of a double-tunnel system.In this study,shaking table tests were designed and performed based on a tunnel under construction in Dalian,China.Numerical models were established using the equivalent linear method combined with ABAQUS finite element software to analyze the seismic response of the interacting system.The results showed that the amplification coefficient of the soil acceleration did not change evidently with the burial depth of the new tunnel but decreased as the seismic amplitude increased.In addition,the existing tunnel acceleration,earth pressure,and internal force were hardly affected by the change in the burial depth;for the new tunnel,the acceleration and internal force decreased as the burial depth increased,while the earth pressure increased.This shows that the earth pressure distribution in a double-tunnel system is relatively complex and mainly concentrated on the arch spandrel and arch springing of the relative area.Overall,when the horizontal clearance between the center of the two tunnels was more than twice the sum of the radius of the outer edges of the two tunnels,the change in the burial depth of the new tunnel had little effect on the existing one,and the tunnel structure was deemed safe.These results provide a preliminary understanding and reference for the seismic performance of a double-tunnel system. 展开更多
关键词 burial depth new tunnel existing tunnel seismic response shaking table tests numerical simulations
下载PDF
Analysis on the Seismic Response of Soil Slopes Based on the Multi-point Input Method 被引量:1
11
作者 Li Li Jing Pengxu Xu Qin 《Earthquake Research in China》 CSCD 2017年第4期574-588,共15页
In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, e... In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, earthquake energy has an attenuation phenomenon in wave propagation,so a wide range of soil slopes and the external medium contact surface of different input points on motion are not identical. If we consider single point input only, it may not correspond with reality, so it is necessary to carry out research on multi-point input methods. Based on the 2-D slope model,single-point input and multi-point input are performed respectively to analyze and compare their similarities and differences in the perspectives of the characteristics of seismic response of soil layer and plastic zone distribution to provide a reference for the seismic design of slopes. The results show that in the perspective of soil seismic response analysis,the peak acceleration output and peak velocity output under multi-point input are greater than the peak values under single point input at the same monitoring point,the peak appearing time is also earlier than that of the single point input; in terms of the plastic zone distribution,the multi-point effect is manifested as the presence of more obvious tensile shear failures; in the perspective of safety coefficient,the safety coefficient under each multi-point input is smaller than that of single point input,a difference of about 7 % or so. In summary,multi-point input is more reasonable and practical than single point input,so multi-point input should be considered in seismic design. 展开更多
关键词 seismic response ANALYSIS GROUND MOTION synthesis Single-point INPUT Multi-point INPUT Safety FACTOR
下载PDF
Time-domain dynamic constitutive model suitable for mucky soil site seismic response 被引量:1
12
作者 Dong Qing Chen Su +2 位作者 Jin Liguo Zhou Zhenghua Li Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期1-13,共13页
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu... Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident. 展开更多
关键词 seismic response time-domain dynamic constitutive model logarithmic dynamic skeleton dampening effect mucky soil
下载PDF
Seismic Response of a Typical Fixed Jacket-Type Offshore Platform (SPD1) Under Sea Waves 被引量:3
13
作者 Khosro Bargi S. Reza Hosseini +1 位作者 Mohammad H. Tadayon Hesam Sharifian 《Open Journal of Marine Science》 2011年第2期36-42,共7页
Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. In seismic design of offshore platforms, it is often necessary to perform a... Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. In seismic design of offshore platforms, it is often necessary to perform a dynamic analysis that accounts for nonlinear pile soil structures interaction effects. This paper summarizes the nonlinear dynamic analysis of a 3-D model of a typical Jacket-Type platform which is installed in Persian Gulf (SPD1), under simultaneously wave and earthquake loading has been conducted. It is assumed that they act in the same and different directions. The interaction between soil and piles is modeled by equivalent pile length theory. The structure is modeled by finite element method (Ansys Inc.). It be concluded that when the longitudinal components of the earthquake and wave are in different directions, an increase on the response of platform can be seen. 展开更多
关键词 Fixed OFFSHORE Platform Nonlinear Dynamic Analysis EARTHQUAKE WAVE seismic response
下载PDF
Seismic response of cracking features in Jubao Mountain during the aftershocks of Jiuzhaigou Ms7.0 earthquake
14
作者 SHEN Tong WANG Yun-sheng +3 位作者 LUO Yong-hong XIN Cong-cong LIU Yong HE Jian-xian 《Journal of Mountain Science》 SCIE CSCD 2019年第11期2532-2547,共16页
Jiuzhaigou is a world-heritage site located in the plateau area of Northwest Sichuan Province,China.Serious slope failures in the epicentral area were triggered by the Ms7.0 Jiuzhaigou earthquake occurred on August 8,... Jiuzhaigou is a world-heritage site located in the plateau area of Northwest Sichuan Province,China.Serious slope failures in the epicentral area were triggered by the Ms7.0 Jiuzhaigou earthquake occurred on August 8,2017.The source areas of the hazards are usually concentrated near ridge crests,revealingthe possible occurrence of ground motion amplification phenomena.To explore the role of the amplification of ground motions in the formation of earthquake-triggered slope failures,two seismometers were installed,on the next day after the main shock,at the bottom of the slopeof Jubao Mountain near the seismogenic fault.The two monitoring sites are located at elevations of 1414 m(J1)and 1551 m(J2,the top of the mountain).Five aftershocks were recorded by the monitoring instruments.We compared the mean levels of the peak ground acceleration(PGA)observed at different locations,and investigated the directional variations inthe shaking energy by analyzing the polar diagrams of the Arias intensity(Ia).Then,in order to identify the directional resonance phenomenonandtheir frequencies and amplification coefficients,we examined the horizontal-to-vertical spectral ratio(HVSR)and the standard spectral ratio(SSR).Polar diagrams of theArias intensity(Ia)indicated that the site response of Jubao Mountain showed a pronounced directivity(in theEW direction)with shaking maxima near the hill top oriented orthogonally to the elongation of the relief.We observed anobvious resonance phenomenonat site J2 at relatively low frequencies(2.5-9 Hz)and very weak spectral amplifications at site J1 at high frequencies(5-15 Hz),which suggested that the predominant frequency of monitoring site J2 was obviously attenuated and that the difference in the spectra was related to the influences of the local-scale site conditions of the whole mountain.The results of spectral ratio analyses(HVSR and SSR)showed that the direction of resonance was concentrated around an EW orientation,and the amplification factors near the hill top were larger than 2.It suggests that geologic factors also play a significant role in the anisotropic amplifications affecting the tops of slopes besides the topographic effects. 展开更多
关键词 Jiuzhaigou Ms7.0 EARTHQUAKE AFTERSHOCKS DIRECTIVITY effects SLOPE dynamic response HVSR SSR
下载PDF
Nonlinear Dynamics Seismic Response of Container Crane Based on Contact Friction Theory 被引量:1
15
作者 Wang Dong Wang Gongxian +1 位作者 Xiong Yeping Li Zhe 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期147-152,共6页
To evaluate the dynamic behavior of a container crane under seismic loads accurately,the contact state between the wheels and the rails or the ground that significantly affect the seismic response of the structure mus... To evaluate the dynamic behavior of a container crane under seismic loads accurately,the contact state between the wheels and the rails or the ground that significantly affect the seismic response of the structure must be considered elaborately.This paper has proposed a modeling method based on the theory of contact and friction for simulating the nonlinear seismic response of large and flexible structure of a jumbo movable container crane,including the contact problem regarding the wheels attached to the bottom of its legs and the rails on which they ride.These models are used to perform extensive dynamic time-history analysis in order to find out their nonlinear dynamic behavior under various excitation modes.It is found that the presented numerical modeling method simulates the nonlinear seismic response of a container crane quite well.Notably,it can verify and expand our understanding of the seismic behaviors by evaluating response performance for the large seaport cranes. 展开更多
关键词 CONTAINER CRANE seismic response FEM analysis CONTACT and FRICTION model
下载PDF
Seismic response and correlation analysis of a pile-supported wharf to near-fault pulse-like ground motions
16
作者 Wang Jianfeng Su Lei +2 位作者 Xie Libo Ling Xianzhang Ju Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期883-897,共15页
Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the ... Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs. 展开更多
关键词 pile-supported wharf correlation analysis near-fault pulse-like ground motion intensity measure seismic response
下载PDF
3-D Simulation Study on Seismic Response of Bridge Piles in Landslide
17
作者 Hou Chaoping Liu Qi 《Earthquake Research in China》 CSCD 2018年第3期425-434,共10页
The anti-slide support structure is widely used in the anti-seismic reinforcement of bridge foundations,but related experimental research was processing slowly. Based on the prototype of the Jiuzhaigou bridge at the C... The anti-slide support structure is widely used in the anti-seismic reinforcement of bridge foundations,but related experimental research was processing slowly. Based on the prototype of the Jiuzhaigou bridge at the Chengdu-Lanzhou Railway,a 3-D simulation model was established on the basis of the shaking table model test,and the rationality of the dynamic analysis model was verified by indicators such as the bending moment of the bridge piles,peak soil pressure,and PGA amplification factors. The results show that the inertia force of the bridge pier has an important influence on the deformation of the pile foundation. The bending moment and shearing force are larger in lateral bridge piles,and the maximum value is near the pile top. The PGA amplification factor is stronger in the back of the rear anti-slide piles and so is it in front of the bridge pier,and the soil is prone to slip and damage. The bedrock is rigid and the dynamic response is maintained at a low level. The anti-slide piles in the rear row play a major role in the anti-seismic reinforcement design,and the anti-slide piles in the front row can be used as an auxiliary support structure. 展开更多
关键词 Anti-slide PILE PIER FOUNDATION SHAKING TABLE test 3-D simulation Earthquake response
下载PDF
Simulating the Seismic Response of Concentrically Braced Frames Using Physical Theory Brace Models 被引量:1
18
作者 Liang Chen Lucia Tirca 《Open Journal of Civil Engineering》 2013年第2期69-81,共13页
The aim of this paper is to assess the accuracy of brace models formulated in Drain 2DX and OpenSees by comparing the simulated results with those obtained from experimental tests. Both, Drain 2DX and OpenSees rely on... The aim of this paper is to assess the accuracy of brace models formulated in Drain 2DX and OpenSees by comparing the simulated results with those obtained from experimental tests. Both, Drain 2DX and OpenSees rely on the physical theory brace model. In this study, experimental tests conducted on the behaviour of structural hollow section braces subjected to symmetric and asymmetric quasi-static cyclic loading were selected for calibrating the numerical model. In addition, the predicted failure strain parameter resulted from a proposed empirical equation as a function of slenderness ratio, width-to-thickness ratio and steel properties was used to define the low-cycle fatigue material that was assigned to model braces in OpenSees. It is concluded that both Drain 2DX and OpenSees brace models give a good prediction in terms of maximum tensile and buckling force, as well as interstorey drift. However, in Drain 2DX, the brace model is not able to replicate the out-of-plan buckling and the braced frame model cannot provide an accurate response when the system experiences highly nonlinear demand. To emphasise the differences in performance between Drain 2DX and OpenSees, the behaviour of a 4-storey concentrically braced frame with zipper bracing configuration, located in Victoria, BC, was investigated. 展开更多
关键词 BRACE Model Plastic HINGE Hysteretic Energy seismic response TIME-HISTORY Analysis
下载PDF
Study on the Influence of Aspect Ratio on the Seismic Response and Overturning Resistance of a New Staggered Story Isolated Structure
19
作者 Tiange Zhao Dewen Liu 《World Journal of Engineering and Technology》 2024年第3期617-634,共18页
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif... The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases. 展开更多
关键词 Aspect Ratio A New Staggered Story Isolated Structure seismic response Overturning Resistance Ratio Isolated Bearing
下载PDF
Effects of rotational components of earthquake on seismic response of arch concrete dams 被引量:1
20
作者 Amir Javad Moradloo Abbas Naiji 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期349-362,共14页
The present study deals with dynamic analysis of arch concrete dams,taking rotational components of earthquakes into account.A modified methodology was used to evaluate the rotational components of the earthquake.The ... The present study deals with dynamic analysis of arch concrete dams,taking rotational components of earthquakes into account.A modified methodology was used to evaluate the rotational components of the earthquake.The translational components of the earthquake have been used in to obtain the rotational components of the earthquake,based on the intersecting isotropic elastic wave propagation.Two rotational components of Taft,Tabas and San-Fernando earthquakes are evaluated based on the translational components of the earthquakes and considering frequency dependencies of incident angle and wave velocity.Finally,dynamic analyses of Morrow Point Dam are presented to evaluate the effects of combined translational and rotational components on the seismic response of the dam.Various conditions of reservoirs,including full and empty state,are considered in the analyses.Fluid–structure interaction was completely taken into account.It was realized that incorporating rotational components increased the maximum compressive and tensile stresses in both empty and full reservoir analyses.Distribution of maximum tensile stresses is very sensitive to the rotational components of the earthquake.Also,it can be concluded that the segregated effect of the rocking component on the response of concrete dams is more effective than the sole effect of the torsional component. 展开更多
关键词 ROTATIONAL components EARTHQUAKE ARCH CONCRETE DAM seismic analysis fluid-structure interaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部