This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics i...This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.展开更多
The air-flow’s states and ways acted on the technological process of chemical fiber are summed up, which includes chip drying, spinning quenching as well as airjet texturing (air texturing, tangling texturing and bul...The air-flow’s states and ways acted on the technological process of chemical fiber are summed up, which includes chip drying, spinning quenching as well as airjet texturing (air texturing, tangling texturing and bulked continuous filament (BCF)),and the effect of air-flow on the process and quality of chemical fiber is studied,and the action of mechanics and heat on the bulked continuous filament are calculated.展开更多
The shifting requirements as imposed on operations ma nagement require adjusting and tailoring the organisational structure to meet ma rket demands. However, translating these requirements directly into hierarchical s...The shifting requirements as imposed on operations ma nagement require adjusting and tailoring the organisational structure to meet ma rket demands. However, translating these requirements directly into hierarchical structure will not ensure the integration of processes across organisational un its and guarantee desirable performance. Therefore, management and management li terature wonders: · How should we connect processes to the external environment within a strategi c framework · Which organisational structures do meet performance requirements · Which choices and freedom do we have within organisational structures · How and when do we implement organisational structures That the hierarchical structure does not meet as such the performance requiremen ts nor did it relate to these became already clear during case studies performed in the ’70s. The conclusion was drawn that organisational changes should affect working processes before they proof to be viable. This required the development of new approach through empirical studies and base d on literature. This led to the development of the organelle structure. The org anelle structure should connect to the strategy and the product flow. Thereto, a decision model has been developed for revealing these relations and the practic al implication. During a number of case studies this methodology has been refined and includes t he strategic choice between variants for the organelle structure with their own performance capabilities; we distinguish about 20 variants ranging between the f unctional organisation and the product flow organisation. These ranges of choice s however can be connected to different order entry points, stemming from logist ic concepts. This extends the performance to improved lead-times and improved c ontrol. Strategic choices relate the organelle structure to external performance criteria dictated by product/market-combinations: · lead-time · quality · costs and internal choices for performance criteria: · flexibility · productivity · resource utilisation · innovative performance. Case studies reveal the drastic improvements of the performance of operations an d manufacturing. The paper will discuss a few of these implementations to demons trate the impact. They also show how one derives the hierarchical structure from the choice for the organelle structure. Organelle structures do bridge the link of an industrial company to its environm ent and the internal possibilities, dictated by characteristics of product flow and process execution. The link to the environment results in a strategic framew ork for assessment of alternatives and possibilities. Choices for organelle stru ctures depend strongly on choices on the order entry points of the hardware flow and the specification flow. The evaluation of the characteristics takes place a gainst the strategic framework ensuring competitive advantage as well as a high probability of factual implementation and performance improvement.展开更多
This article investigates the dynamic relationship between technology and AI(artificial intelligence)and the role that societal requirements play in pushing AI research and adoption.Technology has advanced dramaticall...This article investigates the dynamic relationship between technology and AI(artificial intelligence)and the role that societal requirements play in pushing AI research and adoption.Technology has advanced dramatically throughout the years,providing the groundwork for the rise of AI.AI systems have achieved incredible feats in various disciplines thanks to advancements in computer power,data availability,and complex algorithms.On the other hand,society’s needs for efficiency,enhanced healthcare,environmental sustainability,and personalized experiences have worked as powerful accelerators for AI’s progress.This article digs into how technology empowers AI and how societal needs dictate its progress,emphasizing their symbiotic relationship.The findings underline the significance of responsible AI research,which considers both technological prowess and ethical issues,to ensure that AI continues to serve the greater good.展开更多
Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using n...Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.展开更多
Thirty-five fruits and seventeen vegetables from Martinique were evaluated for total phenol content (TPC), Vitamin C and carotenoid content. TPC, Vitamin C and carotenoid contents ranged from 11.7 to 978.6 mg/100g, 0....Thirty-five fruits and seventeen vegetables from Martinique were evaluated for total phenol content (TPC), Vitamin C and carotenoid content. TPC, Vitamin C and carotenoid contents ranged from 11.7 to 978.6 mg/100g, 0.1 to 2853.8 mg/100g and 9.7 to 9269.7 μg/100g respectively. Fruits and vegetables from Martinique have equivalent or higher TPC, Vitamin C and carotenoid contents than fruits and vegetables from temperate climates. Cashew apple had high values for all three parameters (55.8 mg/100g of Vitamin C, 603 mg/100g of TPC and 924 μg/100g of carotenoids). Bassignac mango and mamey apple had the highest carotenoid contents, with 3800.3 and 3199.7 μg/100g respectively. Acerola had the highest Vitamin C and polyphenol contents with 2853.8 μg/100g and 727.4 mg/100g respectively. Pigeon peas had high values for all three parameters (569.2 mg/100g of Vitamin C, 978.6 mg/100g of TPC and 364.3 μg/100g of carotenoids). Pumpkin and watercress had the highest carotenoid content, with 9269.7 and 4339 μg/100g respectively. TPC, Vitamin C and carotenoid content were significantly impacted by processing techniques. TPC, Vitamin C and carotenoid contents decreased by up to 75.78%, 100% and 70.18% respectively, depending on the processing technique used.展开更多
Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions a...Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.展开更多
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie...The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.展开更多
We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during ...We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). .展开更多
This study was undertaken to develop a numerical process that can be used as a quality criterion to determine the technological value of the Egyptian cotton varieties, which in turn would denote the end-use of their f...This study was undertaken to develop a numerical process that can be used as a quality criterion to determine the technological value of the Egyptian cotton varieties, which in turn would denote the end-use of their fibers. However the material used in the study comprised the 6 Egyptian cotton varieties Giza70, Giza80, Giza86, Giza88, Giza90 and Giza92. According to the local practice in Egypt, Giza70, Giza88 and Giza92 belong to the Extra-Long Staple (ELS) category, while Giza80, Giza86 and Giza90 are included under the Long Staple (LS) category. The regression analysis of the relationships between fiber properties and yarn skein strength (lea product) of the 2 carded ring counts 40 and 50 Ne, was employed to drive an equation for calculating the Multiplicative Analytic Hierarchy Process (MIAHP) values. The values of the MIAHP have been used as numerical determinations of the technological values of the Egyptian cotton varieties. Nevertheless, the findings of this study clarified that with respect to the criteria weights, the pair-wise comparisons denoted that fiber length properties of Egyptian cotton ranked first where they revealed the most dominant effect on yarn strength, while tensile properties ranked second with a relative weight close to that of fiber length. On the contrary, the relative weight of fiber fineness (micronaire reading) was found to be marginal. With regard to the relative weight of sub-criterion, the pair-wise comparisons indicated that the role of fiber tenacity as a determinant of yarn strength is much superior to that of fiber elongation. Further the global weights of the sub-criterion of fiber length pointed out that the UHML (upper half mean length) plays an important role in determining yarn strength of the Egyptian cotton comparing with either the UI (uniformity index) or the SFC (short fiber content). In conformity with the values of the MIAHP, it was found that in the order of descending rank, Giza88 ranked first, followed by Giza92, Giza70, Giza86, Giza80 and finally Giza90.展开更多
Crude palm Oil (CPO) processing is very popular in African Countries. In Cameroon, various actors are involved ranging from agro-industrial complexes to traditional processing by smallholders who use very inefficient ...Crude palm Oil (CPO) processing is very popular in African Countries. In Cameroon, various actors are involved ranging from agro-industrial complexes to traditional processing by smallholders who use very inefficient equipment and thus have low oil extraction rates. Small-scale processing by smallholders dates back to the early 1980s and has witnessed a lot of changes as a result of new actors in the sector, changing technologies and to an extent, government policies. This paper attempts a review of the origins and evolution of small-scale palm oil processing using intermediate technology, highlighting its importance to both the farmer and the national economy. An attempt is made to look into the future of this activity, with proposals for its consolidation.展开更多
Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice opera...Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style.展开更多
How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable i...How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable insights by utilizing the power of cutting-edge algorithms and machine learning, empowering enterprises to make deft decisions quickly and efficiently. This article explores the idea of cognitive computing and AI in decision-making, emphasizing its function in converting unvalued data into valuable knowledge. It details the advantages of utilizing these technologies, such as greater productivity, accuracy, and efficiency. Businesses may use cognitive computing and AI to their advantage to obtain a competitive edge in today’s data-driven world by knowing their capabilities and possibilities [1].展开更多
文摘This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.
文摘The air-flow’s states and ways acted on the technological process of chemical fiber are summed up, which includes chip drying, spinning quenching as well as airjet texturing (air texturing, tangling texturing and bulked continuous filament (BCF)),and the effect of air-flow on the process and quality of chemical fiber is studied,and the action of mechanics and heat on the bulked continuous filament are calculated.
文摘The shifting requirements as imposed on operations ma nagement require adjusting and tailoring the organisational structure to meet ma rket demands. However, translating these requirements directly into hierarchical structure will not ensure the integration of processes across organisational un its and guarantee desirable performance. Therefore, management and management li terature wonders: · How should we connect processes to the external environment within a strategi c framework · Which organisational structures do meet performance requirements · Which choices and freedom do we have within organisational structures · How and when do we implement organisational structures That the hierarchical structure does not meet as such the performance requiremen ts nor did it relate to these became already clear during case studies performed in the ’70s. The conclusion was drawn that organisational changes should affect working processes before they proof to be viable. This required the development of new approach through empirical studies and base d on literature. This led to the development of the organelle structure. The org anelle structure should connect to the strategy and the product flow. Thereto, a decision model has been developed for revealing these relations and the practic al implication. During a number of case studies this methodology has been refined and includes t he strategic choice between variants for the organelle structure with their own performance capabilities; we distinguish about 20 variants ranging between the f unctional organisation and the product flow organisation. These ranges of choice s however can be connected to different order entry points, stemming from logist ic concepts. This extends the performance to improved lead-times and improved c ontrol. Strategic choices relate the organelle structure to external performance criteria dictated by product/market-combinations: · lead-time · quality · costs and internal choices for performance criteria: · flexibility · productivity · resource utilisation · innovative performance. Case studies reveal the drastic improvements of the performance of operations an d manufacturing. The paper will discuss a few of these implementations to demons trate the impact. They also show how one derives the hierarchical structure from the choice for the organelle structure. Organelle structures do bridge the link of an industrial company to its environm ent and the internal possibilities, dictated by characteristics of product flow and process execution. The link to the environment results in a strategic framew ork for assessment of alternatives and possibilities. Choices for organelle stru ctures depend strongly on choices on the order entry points of the hardware flow and the specification flow. The evaluation of the characteristics takes place a gainst the strategic framework ensuring competitive advantage as well as a high probability of factual implementation and performance improvement.
文摘This article investigates the dynamic relationship between technology and AI(artificial intelligence)and the role that societal requirements play in pushing AI research and adoption.Technology has advanced dramatically throughout the years,providing the groundwork for the rise of AI.AI systems have achieved incredible feats in various disciplines thanks to advancements in computer power,data availability,and complex algorithms.On the other hand,society’s needs for efficiency,enhanced healthcare,environmental sustainability,and personalized experiences have worked as powerful accelerators for AI’s progress.This article digs into how technology empowers AI and how societal needs dictate its progress,emphasizing their symbiotic relationship.The findings underline the significance of responsible AI research,which considers both technological prowess and ethical issues,to ensure that AI continues to serve the greater good.
基金supported by the High Value-added Food Technology Development Program in Korea (Grant No. 323002-4)the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry, Republic of Korea。
文摘Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.
文摘Thirty-five fruits and seventeen vegetables from Martinique were evaluated for total phenol content (TPC), Vitamin C and carotenoid content. TPC, Vitamin C and carotenoid contents ranged from 11.7 to 978.6 mg/100g, 0.1 to 2853.8 mg/100g and 9.7 to 9269.7 μg/100g respectively. Fruits and vegetables from Martinique have equivalent or higher TPC, Vitamin C and carotenoid contents than fruits and vegetables from temperate climates. Cashew apple had high values for all three parameters (55.8 mg/100g of Vitamin C, 603 mg/100g of TPC and 924 μg/100g of carotenoids). Bassignac mango and mamey apple had the highest carotenoid contents, with 3800.3 and 3199.7 μg/100g respectively. Acerola had the highest Vitamin C and polyphenol contents with 2853.8 μg/100g and 727.4 mg/100g respectively. Pigeon peas had high values for all three parameters (569.2 mg/100g of Vitamin C, 978.6 mg/100g of TPC and 364.3 μg/100g of carotenoids). Pumpkin and watercress had the highest carotenoid content, with 9269.7 and 4339 μg/100g respectively. TPC, Vitamin C and carotenoid content were significantly impacted by processing techniques. TPC, Vitamin C and carotenoid contents decreased by up to 75.78%, 100% and 70.18% respectively, depending on the processing technique used.
基金the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7)。
文摘Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.
基金supported by the National Key Research and Development Programs(2021YFB3704201 and 2021YFB3700902).
文摘The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.
文摘We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). .
文摘This study was undertaken to develop a numerical process that can be used as a quality criterion to determine the technological value of the Egyptian cotton varieties, which in turn would denote the end-use of their fibers. However the material used in the study comprised the 6 Egyptian cotton varieties Giza70, Giza80, Giza86, Giza88, Giza90 and Giza92. According to the local practice in Egypt, Giza70, Giza88 and Giza92 belong to the Extra-Long Staple (ELS) category, while Giza80, Giza86 and Giza90 are included under the Long Staple (LS) category. The regression analysis of the relationships between fiber properties and yarn skein strength (lea product) of the 2 carded ring counts 40 and 50 Ne, was employed to drive an equation for calculating the Multiplicative Analytic Hierarchy Process (MIAHP) values. The values of the MIAHP have been used as numerical determinations of the technological values of the Egyptian cotton varieties. Nevertheless, the findings of this study clarified that with respect to the criteria weights, the pair-wise comparisons denoted that fiber length properties of Egyptian cotton ranked first where they revealed the most dominant effect on yarn strength, while tensile properties ranked second with a relative weight close to that of fiber length. On the contrary, the relative weight of fiber fineness (micronaire reading) was found to be marginal. With regard to the relative weight of sub-criterion, the pair-wise comparisons indicated that the role of fiber tenacity as a determinant of yarn strength is much superior to that of fiber elongation. Further the global weights of the sub-criterion of fiber length pointed out that the UHML (upper half mean length) plays an important role in determining yarn strength of the Egyptian cotton comparing with either the UI (uniformity index) or the SFC (short fiber content). In conformity with the values of the MIAHP, it was found that in the order of descending rank, Giza88 ranked first, followed by Giza92, Giza70, Giza86, Giza80 and finally Giza90.
文摘Crude palm Oil (CPO) processing is very popular in African Countries. In Cameroon, various actors are involved ranging from agro-industrial complexes to traditional processing by smallholders who use very inefficient equipment and thus have low oil extraction rates. Small-scale processing by smallholders dates back to the early 1980s and has witnessed a lot of changes as a result of new actors in the sector, changing technologies and to an extent, government policies. This paper attempts a review of the origins and evolution of small-scale palm oil processing using intermediate technology, highlighting its importance to both the farmer and the national economy. An attempt is made to look into the future of this activity, with proposals for its consolidation.
基金Project"863":Physical Model-based Dynamic Evolution Technology of a Complex Scene(2015AA016404)the SDUST Excellent Teaching Team Construction Plan.
文摘Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style.
文摘How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable insights by utilizing the power of cutting-edge algorithms and machine learning, empowering enterprises to make deft decisions quickly and efficiently. This article explores the idea of cognitive computing and AI in decision-making, emphasizing its function in converting unvalued data into valuable knowledge. It details the advantages of utilizing these technologies, such as greater productivity, accuracy, and efficiency. Businesses may use cognitive computing and AI to their advantage to obtain a competitive edge in today’s data-driven world by knowing their capabilities and possibilities [1].