期刊文献+
共找到48,055篇文章
< 1 2 250 >
每页显示 20 50 100
Traffic Big Data in the Development of Intelligent Transportation System
1
作者 Qiang Shi Lei Wang Taojie Wang 《Journal of Electronic Research and Application》 2018年第4期10-13,共4页
With the continuous development and advancement of computer technology,big data guarantee the establishment of an urban intelligent transportation system,a solid environmental basis to reform its application,and the c... With the continuous development and advancement of computer technology,big data guarantee the establishment of an urban intelligent transportation system,a solid environmental basis to reform its application,and the construction of a deeply integrated data mechanism for big data-driven traffic management.This review paper briefly elaborates on the basic characteristics and sources of traffic big data as well as expounds on the problems and application mechanisms of big data in intelligent transportation systems. 展开更多
关键词 big data INTELLIGENT TRANSPORTATION system PROBLEM application development
下载PDF
Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data
2
作者 Fahim Nasir Abdulghani Ali Ahmed +2 位作者 Mehmet Sabir Kiraz Iryna Yevseyeva Mubarak Saif 《Computers, Materials & Continua》 SCIE EI 2024年第10期1703-1728,共26页
Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challen... Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics,limiting their overall effectiveness.This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers(SLCs)and evaluates their performance in data-driven decision-making.The evaluation uses various metrics,with a particular focus on the Harmonic Mean Score(F-1 score)on an imbalanced real-world bank target marketing dataset.The findings indicate that grid-search random forest and random-search random forest excel in Precision and area under the curve,while Extreme Gradient Boosting(XGBoost)outperforms other traditional classifiers in terms of F-1 score.Employing oversampling methods to address the imbalanced data shows significant performance improvement in XGBoost,delivering superior results across all metrics,particularly when using the SMOTE variant known as the BorderlineSMOTE2 technique.The study concludes several key factors for effectively addressing the challenges of supervised learning with imbalanced datasets.These factors include the importance of selecting appropriate datasets for training and testing,choosing the right classifiers,employing effective techniques for processing and handling imbalanced datasets,and identifying suitable metrics for performance evaluation.Additionally,factors also entail the utilisation of effective exploratory data analysis in conjunction with visualisation techniques to yield insights conducive to data-driven decision-making. 展开更多
关键词 big data machine learning data mining data visualization label encoding imbalanced dataset sampling techniques
下载PDF
Opportunities and Challenges of College Mental Health Education from the Perspective of Big Data
3
作者 Xiaojian Cai 《Journal of Contemporary Educational Research》 2024年第4期193-198,共6页
This paper explores the opportunities and challenges of college mental health education from the perspective of big data.Firstly,through literature review,the importance of mental health education and the current issu... This paper explores the opportunities and challenges of college mental health education from the perspective of big data.Firstly,through literature review,the importance of mental health education and the current issues are elucidated.Then,from the perspective of big data,the potential opportunities of big data in college mental health education are analyzed,including data-driven personalized education,real-time monitoring and warning systems,and interdisciplinary research and collaboration.At the same time,the challenges faced by college mental health education under the perspective of big data are also pointed out,such as data privacy and security issues,insufficient data analysis and interpretation capabilities,and inadequate technical facilities and talent support.Lastly,the research content of this paper is summarized,and directions and suggestions for future research are proposed. 展开更多
关键词 big data perspective College mental health education OPPORTUNITIES CHALLENGES Personalized education Real-time monitoring Interdisciplinary research
下载PDF
Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
4
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1711-1728,共18页
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc... A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature. 展开更多
关键词 traffic flow prediction sptiotemporal data heterogeneous data Conv-BiLSTM data-CENTRIC intra-data
下载PDF
An Innovative K-Anonymity Privacy-Preserving Algorithm to Improve Data Availability in the Context of Big Data
5
作者 Linlin Yuan Tiantian Zhang +2 位作者 Yuling Chen Yuxiang Yang Huang Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1561-1579,共19页
The development of technologies such as big data and blockchain has brought convenience to life,but at the same time,privacy and security issues are becoming more and more prominent.The K-anonymity algorithm is an eff... The development of technologies such as big data and blockchain has brought convenience to life,but at the same time,privacy and security issues are becoming more and more prominent.The K-anonymity algorithm is an effective and low computational complexity privacy-preserving algorithm that can safeguard users’privacy by anonymizing big data.However,the algorithm currently suffers from the problem of focusing only on improving user privacy while ignoring data availability.In addition,ignoring the impact of quasi-identified attributes on sensitive attributes causes the usability of the processed data on statistical analysis to be reduced.Based on this,we propose a new K-anonymity algorithm to solve the privacy security problem in the context of big data,while guaranteeing improved data usability.Specifically,we construct a new information loss function based on the information quantity theory.Considering that different quasi-identification attributes have different impacts on sensitive attributes,we set weights for each quasi-identification attribute when designing the information loss function.In addition,to reduce information loss,we improve K-anonymity in two ways.First,we make the loss of information smaller than in the original table while guaranteeing privacy based on common artificial intelligence algorithms,i.e.,greedy algorithm and 2-means clustering algorithm.In addition,we improve the 2-means clustering algorithm by designing a mean-center method to select the initial center of mass.Meanwhile,we design the K-anonymity algorithm of this scheme based on the constructed information loss function,the improved 2-means clustering algorithm,and the greedy algorithm,which reduces the information loss.Finally,we experimentally demonstrate the effectiveness of the algorithm in improving the effect of 2-means clustering and reducing information loss. 展开更多
关键词 Blockchain big data K-ANONYMITY 2-means clustering greedy algorithm mean-center method
下载PDF
Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards
6
作者 Ali Sorour Anthony S.Atkins 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期25-41,共17页
As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in H... As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in HEIs encompasses handling huge amounts of data coming from different sources.This paper reviews big data and analyses the cases from the literature regarding quality assurance(QA)in HEIs.It also outlines a framework that can address the big data challenge in HEIs to handle QA monitoring using BI dashboards and a prototype dashboard is presented in this paper.The dashboard was developed using a utilisation tool to monitor QA in HEIs to provide visual representations of big data.The prototype dashboard enables stakeholders to monitor compliance with QA standards while addressing the big data challenge associated with the substantial volume of data managed by HEIs’QA systems.This paper also outlines how the developed system integrates big data from social media into the monitoring dashboard. 展开更多
关键词 big data Business intelligence(BI) Dashboards Higher education(HE) Quality assurance(QA) Social media
下载PDF
An Overview of the Application of Big Data in Supply Chain Management and Adaptation in Nigeria
7
作者 Jehoshaphat Jaiye Dukiya 《Journal of Computer and Communications》 2024年第8期37-51,共15页
That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through... That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through the jaguars-loom mainframe computer to the present modern high power processing computers with sextillion bytes storage capacity has prompted discussion of Big Data concept as a tool in managing hitherto all human challenges of complex human system multiplier effects. The supply chain management (SCM) that deals with spatial service delivery that must be safe, efficient, reliable, cheap, transparent, and foreseeable to meet customers’ needs cannot but employ bid data tools in its operation. This study employs secondary data online to review the importance of big data in supply chain management and the levels of adoption in Nigeria. The study revealed that the application of big data tools in SCM and other industrial sectors is synonymous to human and national development. It is therefore recommended that both private and governmental bodies should key into e-transactions for easy data assemblage and analysis for profitable forecasting and policy formation. 展开更多
关键词 big data IoT Optimization Right data Supply Chain Transport Management
下载PDF
Protection of Basic Human Rights in the Application of Big Data to Counter Terrorism
8
作者 夏雨 齐延平 PAN Yingzhao(译) 《The Journal of Human Rights》 2019年第5期590-602,共13页
In the era of big data,the ways people work,live and think have changed dramatically,and the social governance system is also being restructured.Achieving intelligent social governance has now become a national strate... In the era of big data,the ways people work,live and think have changed dramatically,and the social governance system is also being restructured.Achieving intelligent social governance has now become a national strategy.The application of big data technology to counterterrorism efforts has become a powerful weapon for all countries.However,due to the uncertainty,difficulty of interpretation and potential risk of discrimination in big data technology and algorithm models,basic human rights,freedom and even ethics are likely to be impacted and challenged.As a result,there is an urgent need to prioritize basic human rights and regulate the application of big data for counter terrorism purposes.The legislation and law enforcement regarding the use of big data to counter terrorism must be subject to constitutional and other legal reviews,so as to strike a balance between safeguarding national security and protecting basic human rights. 展开更多
关键词 the application of big data to COUNTER TERRORISM algorithm DISCRIMINATION national security basic human RIGHTS the principle of BALANCE
下载PDF
Comparative study of microarray and experimental data on Schwann cells in peripheral nerve degeneration and regeneration: big data analysis 被引量:6
9
作者 Ulfuara Shefa Junyang Jung 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期1099-1104,共6页
A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data prov... A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data provide information on differences between microarray-based and experiment-based gene expression analyses. According to microarray data, several genes exhibit increased expression(fold change) but they are weakly expressed in experimental studies(based on morphology, protein and mRNA levels). In contrast, some genes are weakly expressed in microarray data and highly expressed in experimental studies;such genes may represent future target genes in Schwann cell studies. These studies allow us to learn about additional genes that could be used to achieve targeted results from experimental studies. In the current big data study by retrieving more than 5000 scientific articles from PubMed or NCBI, Google Scholar, and Google, 1016(up-and downregulated) genes were determined to be related to Schwann cells. However,no experiment was performed in the laboratory; rather, the present study is part of a big data analysis. Our study will contribute to our understanding of Schwann cell biology by aiding in the identification of genes.Based on a comparative analysis of all microarray data, we conclude that the microarray could be a good tool for predicting the expression and intensity of different genes of interest in actual experiments. 展开更多
关键词 Schwann cells big data analysis PERIPHERAL NERVE DEGENERATION PERIPHERAL NERVE REGENERATION MICROARRAY matched GENES promising GENES gene ranking
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
10
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 big data security data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
11
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Leveraging the potential of big genomic and phenotypic data for genome-wide association mapping in wheat
12
作者 Moritz Lell Yusheng Zhao Jochen C.Reif 《The Crop Journal》 SCIE CSCD 2024年第3期803-813,共11页
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s... Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community. 展开更多
关键词 big data Genome-wide association study data integration Genomic prediction WHEAT
下载PDF
Research on Tensor Multi-Clustering Distributed Incremental Updating Method for Big Data
13
作者 Hongjun Zhang Zeyu Zhang +3 位作者 Yilong Ruan Hao Ye Peng Li Desheng Shi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1409-1432,共24页
The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces ... The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update(BDTMCDIncreUpdate),which combines distributed computing,storage technology,and incremental update techniques to provide an efficient and effective means for clustering analysis.Firstly,the original dataset is divided into multiple subblocks,and distributed computing resources are utilized to process the sub-blocks in parallel,enhancing efficiency.Then,initial clustering is performed on each sub-block using tensor-based multi-clustering techniques to obtain preliminary results.When new data arrives,incremental update technology is employed to update the core tensor and factor matrix,ensuring that the clustering model can adapt to changes in data.Finally,by combining the updated core tensor and factor matrix with historical computational results,refined clustering results are obtained,achieving real-time adaptation to dynamic data.Through experimental simulation on the Aminer dataset,the BDTMCDIncreUpdate method has demonstrated outstanding performance in terms of accuracy(ACC)and normalized mutual information(NMI)metrics,achieving an accuracy rate of 90%and an NMI score of 0.85,which outperforms existing methods such as TClusInitUpdate and TKLClusUpdate in most scenarios.Therefore,the BDTMCDIncreUpdate method offers an innovative solution to the field of big data analysis,integrating distributed computing,incremental updates,and tensor-based multi-clustering techniques.It not only improves the efficiency and scalability in processing large-scale high-dimensional datasets but also has been validated for its effectiveness and accuracy through experiments.This method shows great potential in real-world applications where dynamic data growth is common,and it is of significant importance for advancing the development of data analysis technology. 展开更多
关键词 TENSOR incremental update DISTRIBUTED clustering processing big data
下载PDF
Big Data Application Simulation Platform Design for Onboard Distributed Processing of LEO Mega-Constellation Networks
14
作者 Zhang Zhikai Gu Shushi +1 位作者 Zhang Qinyu Xue Jiayin 《China Communications》 SCIE CSCD 2024年第7期334-345,共12页
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist... Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes. 展开更多
关键词 big data application Hadoop LEO mega-constellation multidimensional simulation onboard distributed processing
下载PDF
Exploring impacts of COVID-19 on spatial and temporal patterns of visitors to Canadian Rocky Mountain National Parks from social media big data
15
作者 Dehui Christina Geng Amy Li +4 位作者 Jieyu Zhang Howie W.Harshaw Christopher Gaston Wanli Wu Guangyu Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期13-33,共21页
COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.D... COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.Data was collected through social media programming and analyzed using spatiotemporal analysis and a geographically weighted regression(GWR)model.Results highlight that COVID-19 significantly changed park visitation patterns.Visitors tended to explore more remote areas peri-pandemic.The GWR model also indicated distance to nearby trails was a significant influence on visitor density.Our results indicate that the pandemic influenced tourism temporal and spatial imbalance.This research presents a novel approach using combined social media big data which can be extended to the field of tourism management,and has important implications to manage visitor patterns and to allocate resources efficiently to satisfy multiple objectives of park management. 展开更多
关键词 Tourism management Social media big data National parks COVID-19 Geographical weighted regression
下载PDF
Issues,Progress,and Recommendations in the Construction of Ecological Barrier on the Mongolian Plateau from the Perspective of Big Data
16
作者 WANG Juanle LI Kai +8 位作者 XU Shuxing SHAO Yating WANG Meng LI Menghan ZHANG Yu LIU Yaping LI Fengjiao Ochir ALTANSUKH Chuluun TOGTOKH 《Journal of Resources and Ecology》 CSCD 2024年第5期1113-1124,共12页
The Mongolian Plateau(MP),situated in the transitional zone between the Siberian taiga and the arid grasslands of Central Asia,plays a significant role as an Ecological Barrier(EB)with crucial implications for ecologi... The Mongolian Plateau(MP),situated in the transitional zone between the Siberian taiga and the arid grasslands of Central Asia,plays a significant role as an Ecological Barrier(EB)with crucial implications for ecological and resource security in Northeast Asia.EB is a vast concept and a complex issue related to many aspects such as water,land,air,vegetation,animals,and people,et al.It is very difficult to understand the whole of EB without a comprehensive perspective,that traditional diverse studies cannot cover.Big data and artificial intelligence(AI)have enabled a shift in the research paradigm.Faced with these requirements,this study identified issues in the construction of EB on MP from a big data perspective.This includes the issues,progress,and future recommendations for EB construction-related studies using big data and AI.Current issues cover the status of theoretical studies,technical bottlenecks,and insufficient synergistic analyses related to EB construction.Research progress introduces advances in scientific research driven by big data in three key areas of MP:natural resources,the ecological environment,and sustainable development.For the future development of EB construction on MP,it is recommended to utilize big data and intelligent computing technologies,integrate extensive regional data resources,develop precise algorithms and automated tools,and construct a big data collaborative innovation platform.This study aims to call for more attention to big data and AI applications in EB studies,thereby supporting the achievement of sustainable development goals in the MP and enhancing the research paradigm transforming in the fields of resources and the environment. 展开更多
关键词 Mongolian Plateau resources and ecology big data artificial intelligence research paradigm
原文传递
A review of control loop monitoring and diagnosis:Prospects of controller maintenance in big data era 被引量:7
17
作者 Xinqing Gao Fan Yang +1 位作者 Chao Shang Dexian Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期952-962,共11页
Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintena... Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintenance is critical to guarantee routine operations of industrial processes. The workflow of controller maintenance generally involves the following steps: monitor operating controller performance and detect performance degradation, diagnose probable root causes of control system malfunctions, and take specific actions to resolve associated problems. In this article, a comprehensive overview of the mainstream of control loop monitoring and diagnosis is provided, and some existing problems are also analyzed and discussed. From the viewpoint of synthesizing abundant information in the context of big data, some prospective ideas and promising methods are outlined to potentially solve problems in industrial applications. 展开更多
关键词 Control LOOP performance assessment Industrial ALARM system Process knowledge ROOT CAUSE diagnosis big data
下载PDF
Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing
18
作者 Huixiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第2期2309-2335,共27页
The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to... The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights.The rapid proliferation of Internet of Things(IoT)devices has ushered in an era of unprecedented data generation and connectivity.These IoT devices,equipped with many sensors and actuators,continuously produce vast volumes of data.However,the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges.However,transmitting all this data to a centralized cloud infrastructure for processing and analysis can be inefficient and impractical due to bandwidth limitations,network latency,and scalability issues.This paper proposed a Self-Learning Internet Traffic Fuzzy Classifier(SLItFC)for traffic data analysis.The proposed techniques effectively utilize clustering and classification procedures to improve classification accuracy in analyzing network traffic data.SLItFC addresses the intricate task of efficiently managing and analyzing IoT data traffic at the edge.It employs a sophisticated combination of fuzzy clustering and self-learning techniques,allowing it to adapt and improve its classification accuracy over time.This adaptability is a crucial feature,given the dynamic nature of IoT environments where data patterns and traffic characteristics can evolve rapidly.With the implementation of the fuzzy classifier,the accuracy of the clustering process is improvised with the reduction of the computational time.SLItFC can reduce computational time while maintaining high classification accuracy.This efficiency is paramount in edge computing,where resource constraints demand streamlined data processing.Additionally,SLItFC’s performance advantages make it a compelling choice for organizations seeking to harness the potential of IoT data for real-time insights and decision-making.With the Self-Learning process,the SLItFC model monitors the network traffic data acquired from the IoT Devices.The Sugeno fuzzy model is implemented within the edge computing environment for improved classification accuracy.Simulation analysis stated that the proposed SLItFC achieves 94.5%classification accuracy with reduced classification time. 展开更多
关键词 Internet of Things(IoT) edge computing traffic data SELF-LEARNING fuzzy-learning
下载PDF
Evaluation of a software positioning tool to support SMEs in adoption of big data analytics
19
作者 Matthew Willetts Anthony S.Atkins 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期13-24,共12页
Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Sma... Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Small and medium sized enterprises(SMEs)are the backbone of the global economy,comprising of 90%of businesses worldwide.However,only 10%SMEs have adopted big data analytics despite the competitive advantage they could achieve.Previous research has analysed the barriers to adoption and a strategic framework has been developed to help SMEs adopt big data analytics.The framework was converted into a scoring tool which has been applied to multiple case studies of SMEs in the UK.This paper documents the process of evaluating the framework based on the structured feedback from a focus group composed of experienced practitioners.The results of the evaluation are presented with a discussion on the results,and the paper concludes with recommendations to improve the scoring tool based on the proposed framework.The research demonstrates that this positioning tool is beneficial for SMEs to achieve competitive advantages by increasing the application of business intelligence and big data analytics. 展开更多
关键词 big data analytics EVALUATION Small and medium sized enterprises (SMEs) Strategic framework
下载PDF
Sports Prediction Model through Cloud Computing and Big Data Based on Artificial Intelligence Method
20
作者 Aws I. Abu Eid Achraf Ben Miled +9 位作者 Ahlem Fatnassi Majid A. Nawaz Ashraf F. A. Mahmoud Faroug A. Abdalla Chams Jabnoun Aida Dhibi Firas M. Allan Mohammed Ahmed Elhossiny Salem Belhaj Imen Ben Mohamed 《Journal of Intelligent Learning Systems and Applications》 2024年第2期53-79,共27页
This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgama... This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgamation of AI methodologies within cloud computing and big data analytics, encompassing the development of a cloud computing framework built on the robust foundation of the Hadoop platform, enriched by AI learning algorithms. Additionally, it examines the creation of a predictive model empowered by tailored artificial intelligence techniques. Rigorous simulations are conducted to extract valuable insights, facilitating method evaluation and performance assessment, all within the dynamic Hadoop environment, thereby reaffirming the precision of the proposed approach. The results and analysis section reveals compelling findings derived from comprehensive simulations within the Hadoop environment. These outcomes demonstrate the efficacy of the Sport AI Model (SAIM) framework in enhancing the accuracy of sports-related outcome predictions. Through meticulous mathematical analyses and performance assessments, integrating AI with big data emerges as a powerful tool for optimizing decision-making in sports. The discussion section extends the implications of these results, highlighting the potential for SAIM to revolutionize sports forecasting, strategic planning, and performance optimization for players and coaches. The combination of big data, cloud computing, and AI offers a promising avenue for future advancements in sports analytics. This research underscores the synergy between these technologies and paves the way for innovative approaches to sports-related decision-making and performance enhancement. 展开更多
关键词 Artificial Intelligence Machine Learning Spark Apache big data SAIM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部