To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ...To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.展开更多
This paper compared the difference between the traditional Petri nets and reasoning Petri nets(RPN),and presented a fuzzy reasoning Petri net(FRPN) model to represent the fuzzy production rules of a rule based system....This paper compared the difference between the traditional Petri nets and reasoning Petri nets(RPN),and presented a fuzzy reasoning Petri net(FRPN) model to represent the fuzzy production rules of a rule based system.Based on the FRPN model,a formal reasoning algorithm using the operators in max algebra was proposed to perform fuzzy reasoning automatically.The algorithm is consistent with the matrix equation expression method in the traditional Petri net.Its legitimacy and feasibility were testified through an example.展开更多
The aim of this paper is to propose a threat assessment method based on intuitionistic fuzzy measurement reasoning with orientaion to deal with the shortcomings of the method proposed in [Ying-Jie Lei et al., Journal ...The aim of this paper is to propose a threat assessment method based on intuitionistic fuzzy measurement reasoning with orientaion to deal with the shortcomings of the method proposed in [Ying-Jie Lei et al., Journal of Electronics and Information Technology 29(9)(2007)2077-2081] and [Dong-Feng Chen et al., Procedia Engineering 29(5)(2012)3302-3306] the ignorance of the influence of the intuitionistic index's orientation on the membership functions in the reasoning, which caused partial information loss in reasoning process. Therefore, we present a 3D expression of intuitionistic fuzzy similarity measurement, make an analysis of the constraints for intuitionistic fuzzy similarity measurement, and redefine the intuitionistic fuzzy similarity measurement. Moreover, in view of the threat assessment problem, we give the system variables of attribute function and assessment index, set up the reasoning system based on intuitionistic fuzzy similarity measurement with orientation, and design the reasoning rules, reasoning algorithms and fuzzy-resolving algorithms. Finally, through the threat assessment, some typical examples are cited to verify the validity and superiority of the method.展开更多
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a resu...Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
Algorithm of fuzzy reasoning has been successful applied in fuzzy control,but its theoretical foundation of algorithms has not been thoroughly investigated. In this paper,structure of basic algorithms of fuzzy reasoni...Algorithm of fuzzy reasoning has been successful applied in fuzzy control,but its theoretical foundation of algorithms has not been thoroughly investigated. In this paper,structure of basic algorithms of fuzzy reasoning was studied, its rationality was discussed from the viewpoint of logic and mathematics, and three theorems were proved. These theorems shows that there always exists a mathe-~matical relation (that is, a bounded real function) between the premises and the conclusion for fuzzy reasoning, and in fact various algorithms of fuzzy reasoning are specific forms of this function. Thus these results show that algorithms of fuzzy reasoning are theoretically reliable.展开更多
This paper gives a semantic fuzzy retrieval method of multimedia object, discusses the principle of fuzzy semantic retrieval technique, presents a fuzzy reasoning mechanism based on the knowledge base, and designs the...This paper gives a semantic fuzzy retrieval method of multimedia object, discusses the principle of fuzzy semantic retrieval technique, presents a fuzzy reasoning mechanism based on the knowledge base, and designs the relevant reasoning algorithms. Researchful results have innovative significance.展开更多
Syllogistic fuzzy reasoning is introduced into fuzzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is m...Syllogistic fuzzy reasoning is introduced into fuzzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is more robust than all other implication inferences for noise data and that CFS has better robustness than conventional fuzzy systems, which provide the solid foundation for CFS's potential application in fuzzy control and modeling and so on.展开更多
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
A framework of knowledge representation of fuzzy language field and fuzzy language value structure is shown. Then the generalized cell automation that can synthetically process fuzzy indeterminacy and random indetermi...A framework of knowledge representation of fuzzy language field and fuzzy language value structure is shown. Then the generalized cell automation that can synthetically process fuzzy indeterminacy and random indeterminacy and generalized inductive logic causal model are put forward. On this basis, the logic indeterminacy causal inductive automatic reasoning mechanism which is based on fuzzy state description is presented. At the end of this paper its application in the development of intelligent controller is discussed.展开更多
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is...Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.展开更多
Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are base...Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are based on statistical approaches that need statistical data of accident occurrences over an extended period of time so this cannot be applied to newly-built roads. In this research a new approach for road hazardous segment identification (RHSI) is introduced using Geospatial Information System (GIS) and fuzzy reasoning. In this research among all factors that usually play critical roles in the occurrence of traffic accidents, environmental factors and roadway design are considered. Using incomplete data the consideration of uncertainty is herein investigated using fuzzy reasoning. This method is performed in part of Iran's transit roads (Kohin-Loshan) for less expensive means of analyzing the risks and road safety in Iran. Comparing the results of this approach with existing statistical methods shows advantages when data are uncertain and incomplete, specially for recently built transportation roadways where statistical data are limited. Results show in some instances accident locations are somewhat displaced from the segments of highest risk and in few sites hazardous segments are not determined using traditional statistical methods.展开更多
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The...Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.展开更多
The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these be...The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
基金The National Natural Science Foundation of China(No60403016)the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.
文摘This paper compared the difference between the traditional Petri nets and reasoning Petri nets(RPN),and presented a fuzzy reasoning Petri net(FRPN) model to represent the fuzzy production rules of a rule based system.Based on the FRPN model,a formal reasoning algorithm using the operators in max algebra was proposed to perform fuzzy reasoning automatically.The algorithm is consistent with the matrix equation expression method in the traditional Petri net.Its legitimacy and feasibility were testified through an example.
基金supported by The Foundation of State Key Laboratory of Astronautic Dynamics of China under Grant No.2012ADL-DW0301The National Natural Science Foundation of China under Grant Nos.61272011,61179010 and 60773209+1 种基金The Natural Science Foundation of Shaanxi Province of China under Grant Nos.2013JQ8035 and 2006F18The Postdoctoral Science Foundation of China under Grant No.2013M542331
文摘The aim of this paper is to propose a threat assessment method based on intuitionistic fuzzy measurement reasoning with orientaion to deal with the shortcomings of the method proposed in [Ying-Jie Lei et al., Journal of Electronics and Information Technology 29(9)(2007)2077-2081] and [Dong-Feng Chen et al., Procedia Engineering 29(5)(2012)3302-3306] the ignorance of the influence of the intuitionistic index's orientation on the membership functions in the reasoning, which caused partial information loss in reasoning process. Therefore, we present a 3D expression of intuitionistic fuzzy similarity measurement, make an analysis of the constraints for intuitionistic fuzzy similarity measurement, and redefine the intuitionistic fuzzy similarity measurement. Moreover, in view of the threat assessment problem, we give the system variables of attribute function and assessment index, set up the reasoning system based on intuitionistic fuzzy similarity measurement with orientation, and design the reasoning rules, reasoning algorithms and fuzzy-resolving algorithms. Finally, through the threat assessment, some typical examples are cited to verify the validity and superiority of the method.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
文摘Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
文摘Algorithm of fuzzy reasoning has been successful applied in fuzzy control,but its theoretical foundation of algorithms has not been thoroughly investigated. In this paper,structure of basic algorithms of fuzzy reasoning was studied, its rationality was discussed from the viewpoint of logic and mathematics, and three theorems were proved. These theorems shows that there always exists a mathe-~matical relation (that is, a bounded real function) between the premises and the conclusion for fuzzy reasoning, and in fact various algorithms of fuzzy reasoning are specific forms of this function. Thus these results show that algorithms of fuzzy reasoning are theoretically reliable.
文摘This paper gives a semantic fuzzy retrieval method of multimedia object, discusses the principle of fuzzy semantic retrieval technique, presents a fuzzy reasoning mechanism based on the knowledge base, and designs the relevant reasoning algorithms. Researchful results have innovative significance.
文摘Syllogistic fuzzy reasoning is introduced into fuzzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is more robust than all other implication inferences for noise data and that CFS has better robustness than conventional fuzzy systems, which provide the solid foundation for CFS's potential application in fuzzy control and modeling and so on.
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金This project was supported by the National Natural Science Foundation of China (No. 69835001).
文摘A framework of knowledge representation of fuzzy language field and fuzzy language value structure is shown. Then the generalized cell automation that can synthetically process fuzzy indeterminacy and random indeterminacy and generalized inductive logic causal model are put forward. On this basis, the logic indeterminacy causal inductive automatic reasoning mechanism which is based on fuzzy state description is presented. At the end of this paper its application in the development of intelligent controller is discussed.
文摘Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.
文摘Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are based on statistical approaches that need statistical data of accident occurrences over an extended period of time so this cannot be applied to newly-built roads. In this research a new approach for road hazardous segment identification (RHSI) is introduced using Geospatial Information System (GIS) and fuzzy reasoning. In this research among all factors that usually play critical roles in the occurrence of traffic accidents, environmental factors and roadway design are considered. Using incomplete data the consideration of uncertainty is herein investigated using fuzzy reasoning. This method is performed in part of Iran's transit roads (Kohin-Loshan) for less expensive means of analyzing the risks and road safety in Iran. Comparing the results of this approach with existing statistical methods shows advantages when data are uncertain and incomplete, specially for recently built transportation roadways where statistical data are limited. Results show in some instances accident locations are somewhat displaced from the segments of highest risk and in few sites hazardous segments are not determined using traditional statistical methods.
文摘Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.
文摘The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.