Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol,so increasing its yield is essential to ensure the sugar security and bioenergy production.Intergeneric hybri...Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol,so increasing its yield is essential to ensure the sugar security and bioenergy production.Intergeneric hybridization is a highly efficient method to produce new genetic variants of crop plants,particularly those species with high ploidy such as sugarcane(Saccharum spp.).Tripidium arundinaceum exhibits many desirable agronomic traits,and has been widely studied to produce hybrids with improved stress tolerance and other characteristics in sugarcane breeding.However,the genetic relationship between T.arundinaceum and Saccharum species,and the individual T.arundinaceum chromosomal compositions in sugarcane hybrids are still elusive.Here we used whole-genome single-nucleotide polymorphisms(SNPs)to ascertain the phylogenetic relationships between these species and found that T.arundinaceum is more closely related to Saccharum than Sorghum,in contrast to the previous narrow genetic analyses using chloroplast DNA.Additionally,oligonucleotide(oligo)-based chromosome-specific painting derived from Saccharum officinarum was able to distinctly identify the chromosomes of T.arundinaceum.We developed the oligo-genomic in situ hybridization(GISH)system for the first time,to unveil the novel chromosome translocations and the transmission of individual T.arundinaceum chromosomes in sugarcane progeny.Notably,we discovered that the chromosomal transmission of T.arundinaceum exhibited several different inheritance modes,including n,2n,and over 2n in the BC1 progenies.Such inheritance patterns may have resulted from first division restitution(FDR)or FDR+nondisjunction of a chromosome with the sister chromatids in the second meiosis division/second division restitution(FDR+NSC/SDR)model during meiosis.These results will be of substantial benefit for the further selection of T.arundinaceum chromosomes for sugarcane genetic improvement.展开更多
Doubled haploid(DH)technology is an efficient method used in commercial maize breeding.Chromosome doubling is a vital step of DH technology;however,the underlying processes regulating chromosome doubling of haploid is...Doubled haploid(DH)technology is an efficient method used in commercial maize breeding.Chromosome doubling is a vital step of DH technology;however,the underlying processes regulating chromosome doubling of haploid is still not well understood,which is key to optimize the technology.In this study,the immature haploid embryos of the maize inbred line Zheng58 treated with amiprophos-methyl(APM)or colchicine were used to analyze transcriptomic and metabolomic changes,75 and 60 differential expressed metabolites(DEMs)were identified between control treatment,respectively.Most differentially expressed genes(DEGs)related to artificial chromosome doubling were down regulated;these were mainly involved in mitosis process.Both DEMs and DEGs co-expression analyses showed that,compared to controls,zeatin biosynthesis and cofactor and vitamin metabolism were significantly enriched in both APM and colchicine treatments.In a parallel experiment,exogenous vitamins including thiamine,nicotinic acid,vitamin B6,or trans-zeatin were added to colchicine treatment;there were synergistic effects between vitamins or zeatin and colchicine in haploid artificial chromosome doubling.These results provide novel insights in exploring the molecular responses to antimitotic reagents at both the transcriptomic and metabolomic levels.In addition,the application efficiency of haploid breeding will be greatly improved by the key factors for artificial chromosome doubling.展开更多
Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations...Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding.展开更多
The identification of sex chromosomes is fundamental for exploring the mechanism and evolution of sex determination.Platichthys stellatus,a species exhibiting clear sexual dimorphism and homomorphic chromosome pairs,h...The identification of sex chromosomes is fundamental for exploring the mechanism and evolution of sex determination.Platichthys stellatus,a species exhibiting clear sexual dimorphism and homomorphic chromosome pairs,has received limited research concerning its sex determination mechanisms.Clarifying the sex chromosome of P.stellatus will enhance our understanding of sex chromosome evolution in Pleuronectiformes.This study employed whole-genome resequencing to investigate the sex chromosome and sex determination system in P.stellatus.Notably,Chr23 was identified as the sex chromosome in P.stellatus,with the sex-determining region(SDR)occupying 48.1%of the chromosome and featuring an XX/XY system.Sex chromosome turnover was observed within Pleuronectiformes,with P.stellatus,Verasper variegatus,and Hippoglossus hippoglossus sharing a common ancestral karyotype.No inversions were detected within the SDR of P.stellatus,although chromosomal rearrangements between sex chromosomes and autosomes were identified.Additionally,a sex-specific marker for P.stellatus was ascertained,enabling genetic sex identification,with significant implications for improving breeding programs and aquaculture practices.展开更多
BACKGROUND The research findings suggest that the prognosis of children with Wilms tumor(WT)is affected by various factors.Some scholars have indicated that loss of heterozygosity(LOH)on chromosome 16q is associated w...BACKGROUND The research findings suggest that the prognosis of children with Wilms tumor(WT)is affected by various factors.Some scholars have indicated that loss of heterozygosity(LOH)on chromosome 16q is associated with a poor prognosis in patients with WT.AIM To further elucidate this relationship,we conducted a meta-analysis.METHODS This meta-analysis was registered in INPLASY(INPLASY2023100060).We systematically searched databases including Embase,PubMed,Web of Science,Cochrane,and Google Scholar up to May 31,2020,for randomized trials reporting any intrapartum fetal surveillance approach.The meta-analysis was performed within a frequentist framework,and the quality and network inconsistency of trials were assessed.Odds ratios and 95%CIs were calculated to report the relationship between event-free survival and 16q LOH in patients with WT.RESULTS Eleven cohort studies were included in this meta-analysis to estimate the relationship between event-free survival and 16q LOH in patients with WT(I^(2)=25%,P<0.001).As expected,16q LOH can serve as an effective predictor of eventfree survival in patients with WT(risk ratio=1.95,95%CI:1.52–2.49,P<0.001).CONCLUSION In pediatric patients with WT,there exists a partial correlation between 16q LOH and an unfavorable treatment prognosis.Clinical detection of 16q chromosome LOH warrants increased attention to the patient’s prognosis.展开更多
Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Px...Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control.展开更多
Fusarium head blight(FHB)threatens wheat production worldwide.Utilization of FHB resistant varieties is the most effective solution for disease control.Owing to the limited sources of FHB resistance,mining of novel re...Fusarium head blight(FHB)threatens wheat production worldwide.Utilization of FHB resistant varieties is the most effective solution for disease control.Owing to the limited sources of FHB resistance,mining of novel resistance genes is crucial.Here,we report an FHB resistance gene from a wild wheat relative species,Roegneria ciliaris and developed FHB resistant germplasm containing this gene.Wheat-R.ciliaris disomic addition line DA3S^(c) showed enhanced type II FHB resistance compared to its sister line 3S^(c)-Null without chromosome 3S^(c),indicating that the resistance was contributed by the addition of 3S^(c).The resistance gene on 3S^(c) was validated using F2 and F2:3 populations derived from the cross between DA3S^(c) and susceptible Aikang 58(a susceptible cultivar),demonstrating that the lines with 3S^(c) had significantly enhanced FHB resistance compared to the individuals without 3S^(c).This was the second resistance gene identified in R.ciliaris,designated FhbRc2.To transfer FhbRc2 to common wheat,we produced a doublemonosomic chromosome population by crossing DA3S^(c) with the Chinese Spring nulli-tetrasomic line N3DT3B.Eight alien chromosome lines containing 3S^(c) were identified using genomic/fluorescence in situ hybridization and 3S^(c)-specific marker analysis.Only the lines carrying the long arm of 3S^(c) conferred FHB resistance,further locating FhbRc2 on 3S^(c)L.A compensating wheat-R.ciliaris Robertsonian translocation line T3DS·3S^(c)L harboring FhbRc2 is developed and provides a potential genetic resource in wheat breeding for enhanced FHB resistance.展开更多
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD succes...BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD successfully treated with Bo’s abdo-minal acupuncture(BAA).CASE SUMMARY We report a 20-year-old man who suffered from cold exposure,presenting with high fever,rash,sore throat,arthralgia,and elevated erythrocyte sedimentation rate,leukocytosis with neutrophilic predominance,elevated ferritin,elevated C-reactive protein,and negative rheumatoid factors.He was diagnosed with AOSD based on the Yamaguchi criteria.After treatment with traditional Chinese medi-cine(TCM)decoction and prednisone acetate tablets,there was some alleviation of sore throat,joint and muscle pain,and fever,but he still had persistent low-grade fever,rash,sore throat and arthralgia.He went to the TCM acupuncture outpatient department to receive BAA.Abdominal acupoints Zhongwan(CV12),Xiawan(CV10),0.5 cm below Xiawan(CV10),Qihai(CV6),Guanyuan(CV4),bilateral Qixue(KI13),bilateral Huaroumen(ST24),bilateral Shangfengshidian(AB1)and bilateral Daheng(SP15)were selected.After 3 months treatment,all symptoms disappeared,and the laboratory examination returned to normal levels.He did not take glucocorticoids or nonsteroidal anti-inflammatory drugs afterwards,and no relapse was observed during the 3-year follow-up period.CONCLUSION BAA can be used as a complementary medical approach for treatment of AOSD.展开更多
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 d...The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.展开更多
The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin a...The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.展开更多
Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect...Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significan...BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.展开更多
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within...Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.展开更多
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli...Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.展开更多
基金funded by the Central Government and Local Science and Technology Development Special Project,China(2022L3086)the Sugarcane Research Foundation of Guangxi University,China(2022GZB006)+3 种基金supported by the National Natural Science Foundation of China(31771863)the Academy of Sugarcane and Sugar Industry,Guangxi University,China(ASSI-2023009)an independent fund of Guangxi Key Laboratory of Sugarcane Biology,China(GXKLSCB-20190201)the China Agriculture Research System of MOF and MARA(CARS-20-1-5)。
文摘Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol,so increasing its yield is essential to ensure the sugar security and bioenergy production.Intergeneric hybridization is a highly efficient method to produce new genetic variants of crop plants,particularly those species with high ploidy such as sugarcane(Saccharum spp.).Tripidium arundinaceum exhibits many desirable agronomic traits,and has been widely studied to produce hybrids with improved stress tolerance and other characteristics in sugarcane breeding.However,the genetic relationship between T.arundinaceum and Saccharum species,and the individual T.arundinaceum chromosomal compositions in sugarcane hybrids are still elusive.Here we used whole-genome single-nucleotide polymorphisms(SNPs)to ascertain the phylogenetic relationships between these species and found that T.arundinaceum is more closely related to Saccharum than Sorghum,in contrast to the previous narrow genetic analyses using chloroplast DNA.Additionally,oligonucleotide(oligo)-based chromosome-specific painting derived from Saccharum officinarum was able to distinctly identify the chromosomes of T.arundinaceum.We developed the oligo-genomic in situ hybridization(GISH)system for the first time,to unveil the novel chromosome translocations and the transmission of individual T.arundinaceum chromosomes in sugarcane progeny.Notably,we discovered that the chromosomal transmission of T.arundinaceum exhibited several different inheritance modes,including n,2n,and over 2n in the BC1 progenies.Such inheritance patterns may have resulted from first division restitution(FDR)or FDR+nondisjunction of a chromosome with the sister chromatids in the second meiosis division/second division restitution(FDR+NSC/SDR)model during meiosis.These results will be of substantial benefit for the further selection of T.arundinaceum chromosomes for sugarcane genetic improvement.
基金supported by the Science and Technology Innovation 2030-Major Project (2023ZD0403001)China Agriculture Research System (CARS-02)+3 种基金Beijing Academy of Agriculture and Forestry Sciences Excellent Scientist Training Program (JKZX202202)National Natural Science Foundation of China (32001554)Beijing Academy of Agriculture and Forestry Sciences Science and Technology Innovation Capability Improvement Project (KJCX20230103)Chinese Universities Scientific Fund (2022TC141).
文摘Doubled haploid(DH)technology is an efficient method used in commercial maize breeding.Chromosome doubling is a vital step of DH technology;however,the underlying processes regulating chromosome doubling of haploid is still not well understood,which is key to optimize the technology.In this study,the immature haploid embryos of the maize inbred line Zheng58 treated with amiprophos-methyl(APM)or colchicine were used to analyze transcriptomic and metabolomic changes,75 and 60 differential expressed metabolites(DEMs)were identified between control treatment,respectively.Most differentially expressed genes(DEGs)related to artificial chromosome doubling were down regulated;these were mainly involved in mitosis process.Both DEMs and DEGs co-expression analyses showed that,compared to controls,zeatin biosynthesis and cofactor and vitamin metabolism were significantly enriched in both APM and colchicine treatments.In a parallel experiment,exogenous vitamins including thiamine,nicotinic acid,vitamin B6,or trans-zeatin were added to colchicine treatment;there were synergistic effects between vitamins or zeatin and colchicine in haploid artificial chromosome doubling.These results provide novel insights in exploring the molecular responses to antimitotic reagents at both the transcriptomic and metabolomic levels.In addition,the application efficiency of haploid breeding will be greatly improved by the key factors for artificial chromosome doubling.
基金financially supported by the National Key Research and Development Program of China (2022YFD1200900 and 2022YFD1200904)the Agricultural Science and Technology Innovation Program+1 种基金Fundamental Research Funds for Central NonProfit of Institute of Crop Sciences, CAASShijiazhuang S&T Project (232490022A and 232490432A)
文摘Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding.
基金supported by the National Key Research and Development Program of China(2022YFD2400100)National Natural Science Foundation of Shandong Province of China(ZR2023QC006)National Natural Science Foundation of China(32403053)。
文摘The identification of sex chromosomes is fundamental for exploring the mechanism and evolution of sex determination.Platichthys stellatus,a species exhibiting clear sexual dimorphism and homomorphic chromosome pairs,has received limited research concerning its sex determination mechanisms.Clarifying the sex chromosome of P.stellatus will enhance our understanding of sex chromosome evolution in Pleuronectiformes.This study employed whole-genome resequencing to investigate the sex chromosome and sex determination system in P.stellatus.Notably,Chr23 was identified as the sex chromosome in P.stellatus,with the sex-determining region(SDR)occupying 48.1%of the chromosome and featuring an XX/XY system.Sex chromosome turnover was observed within Pleuronectiformes,with P.stellatus,Verasper variegatus,and Hippoglossus hippoglossus sharing a common ancestral karyotype.No inversions were detected within the SDR of P.stellatus,although chromosomal rearrangements between sex chromosomes and autosomes were identified.Additionally,a sex-specific marker for P.stellatus was ascertained,enabling genetic sex identification,with significant implications for improving breeding programs and aquaculture practices.
基金Supported by Yunnan Provincial Department of Science and Technology Provincial Basic Research Program(Kunming Medical Joint Special Project,No.2019FE001(-276)Kunming Health Science and Technology Talents Training Project and"Ten Hundred Thousands"Project Training Plan,No.2020-SW(Backup)-121.
文摘BACKGROUND The research findings suggest that the prognosis of children with Wilms tumor(WT)is affected by various factors.Some scholars have indicated that loss of heterozygosity(LOH)on chromosome 16q is associated with a poor prognosis in patients with WT.AIM To further elucidate this relationship,we conducted a meta-analysis.METHODS This meta-analysis was registered in INPLASY(INPLASY2023100060).We systematically searched databases including Embase,PubMed,Web of Science,Cochrane,and Google Scholar up to May 31,2020,for randomized trials reporting any intrapartum fetal surveillance approach.The meta-analysis was performed within a frequentist framework,and the quality and network inconsistency of trials were assessed.Odds ratios and 95%CIs were calculated to report the relationship between event-free survival and 16q LOH in patients with WT.RESULTS Eleven cohort studies were included in this meta-analysis to estimate the relationship between event-free survival and 16q LOH in patients with WT(I^(2)=25%,P<0.001).As expected,16q LOH can serve as an effective predictor of eventfree survival in patients with WT(risk ratio=1.95,95%CI:1.52–2.49,P<0.001).CONCLUSION In pediatric patients with WT,there exists a partial correlation between 16q LOH and an unfavorable treatment prognosis.Clinical detection of 16q chromosome LOH warrants increased attention to the patient’s prognosis.
基金supported by the National Natural Science Foundation of China(32172503 and 32260721)the Natural Science Foundation of Fujian Province,China(2023J01069)+2 种基金the State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,China(SKL2022001)the Innovation Fund of Fujan Agriculture and Forestry University,China(KFB23014A)the Undergraduate Training Program for Innovation and Entrepreneurship of Fujian Province,China(S202210389101).
文摘Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control.
基金supported by Science and Technology Innovation 2030-Major Project (2023ZD04025)the Fundamental Research Funds for the Central Universities (XUEKEN2022012,YDZX202301)+3 种基金Zhongshan Biological Breeding Laboratory (ZSBBL)ZSBBL-KY2023-02-2,Jiangsu Provincial Key Research and Development Program (BE2022346,BE2021375)Seed Industry Revitalization Project of Jiangsu Province (JBGS (2021)006,JBGS (2021)013 and JBGS (2021)047)the Joint Research of Improved Wheat Variety of Anhui,the Key Research and the Jiangsu Agricultural Technology System (JATS) ([2023]422)Natural Science Foundation of Shanghai (22ZR1444900).
文摘Fusarium head blight(FHB)threatens wheat production worldwide.Utilization of FHB resistant varieties is the most effective solution for disease control.Owing to the limited sources of FHB resistance,mining of novel resistance genes is crucial.Here,we report an FHB resistance gene from a wild wheat relative species,Roegneria ciliaris and developed FHB resistant germplasm containing this gene.Wheat-R.ciliaris disomic addition line DA3S^(c) showed enhanced type II FHB resistance compared to its sister line 3S^(c)-Null without chromosome 3S^(c),indicating that the resistance was contributed by the addition of 3S^(c).The resistance gene on 3S^(c) was validated using F2 and F2:3 populations derived from the cross between DA3S^(c) and susceptible Aikang 58(a susceptible cultivar),demonstrating that the lines with 3S^(c) had significantly enhanced FHB resistance compared to the individuals without 3S^(c).This was the second resistance gene identified in R.ciliaris,designated FhbRc2.To transfer FhbRc2 to common wheat,we produced a doublemonosomic chromosome population by crossing DA3S^(c) with the Chinese Spring nulli-tetrasomic line N3DT3B.Eight alien chromosome lines containing 3S^(c) were identified using genomic/fluorescence in situ hybridization and 3S^(c)-specific marker analysis.Only the lines carrying the long arm of 3S^(c) conferred FHB resistance,further locating FhbRc2 on 3S^(c)L.A compensating wheat-R.ciliaris Robertsonian translocation line T3DS·3S^(c)L harboring FhbRc2 is developed and provides a potential genetic resource in wheat breeding for enhanced FHB resistance.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金Supported by Beijing Municipal Commission of Education,No.SM202214075001。
文摘BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD successfully treated with Bo’s abdo-minal acupuncture(BAA).CASE SUMMARY We report a 20-year-old man who suffered from cold exposure,presenting with high fever,rash,sore throat,arthralgia,and elevated erythrocyte sedimentation rate,leukocytosis with neutrophilic predominance,elevated ferritin,elevated C-reactive protein,and negative rheumatoid factors.He was diagnosed with AOSD based on the Yamaguchi criteria.After treatment with traditional Chinese medi-cine(TCM)decoction and prednisone acetate tablets,there was some alleviation of sore throat,joint and muscle pain,and fever,but he still had persistent low-grade fever,rash,sore throat and arthralgia.He went to the TCM acupuncture outpatient department to receive BAA.Abdominal acupoints Zhongwan(CV12),Xiawan(CV10),0.5 cm below Xiawan(CV10),Qihai(CV6),Guanyuan(CV4),bilateral Qixue(KI13),bilateral Huaroumen(ST24),bilateral Shangfengshidian(AB1)and bilateral Daheng(SP15)were selected.After 3 months treatment,all symptoms disappeared,and the laboratory examination returned to normal levels.He did not take glucocorticoids or nonsteroidal anti-inflammatory drugs afterwards,and no relapse was observed during the 3-year follow-up period.CONCLUSION BAA can be used as a complementary medical approach for treatment of AOSD.
基金supported by a Presidential Postdoctoral Fellowship (021229-00001) from Nanyang Technological University,Singapore (to JZ)a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship (021207-00001) from NTU Singaporea Mistletoe Research Fellowship (022522-00001) from the Momental Foundaton,USA (to CHL)
文摘The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.32070534(to WY),32370567(to WY),82371874(to XL),81830032(to XL),82071421(to SL)Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XL)+2 种基金Guangzhou Key Research Program on Brain Science,No.202007030008(to XL)Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(to XL)Guangdong Basic and Applied Basic Research Foundation,Nos.2022A1515012301(to WY),2023B1515020031(to WY).
文摘The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
基金supported by the Science and Technology(S&T)Program of Hebei Province,No.22377798D(to YZ).
文摘Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金Supported by Natural Science Foundation of Anhui Medical University,No.2023xkj130.
文摘BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.
基金supported by the Natural Science Foundation of Shanghai,No.22ZR147750Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.23Y11906600Shanghai Changzheng Hospital Innovative Clinical Research Project,No.2020YLCYJ-Y02(all to YY).
文摘Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.
基金supported by the National Natural Science Foundation of China,No.82271214(to ZY)the Natural Science Foundation of Hubei Province of China,No.2022CFB109(to ZY)。
文摘Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.